On the Motion of Several Rigid Bodies 191
[8] B. Ducomet, E. Feireisl, H. Petzeltova, I. Straskraba. Global in time weak solutions
for compressible barotropic self-graviting fluids, DCDS, A, 11, 1, 113–130.
[9] B. Ducomet, E. Feireisl, H. Petzeltova, I. Straskraba: Existence global pour un fluide
barotropique autogravitant, C. R. Acad. Paris, 332, 627-632, 2001.
[10] R.J. DiPerna and P.-L. Lions. Ordinary differential equations, transport theory and
Sobolev spaces. Invent. Math., 98, 511–547, 1989.
[11] R. Farwig. An L
q
-analysis of viscous fluid flow past a rotating obstacle. Tˆohoku
Math. J. , 58 , 129–147, 2005
[12] R. Farwig. Estimates of lower order derivatives of viscous fluid flow past a rotating
obstacle. Banach Center Publications Warsaw, 70, 73–82, 2005.
[13] R. Farwig and T. Hishida. Stationary Navier-Stokes flow around a rotating obstacle.
Funkcialaj Ekvacioj, 3, 371–403, 2007.
[14] R. Farwig, T. Hishida, and D. M¨uller. L
q
-theory of a singular “winding” integral
operator arising from fluid dynamics. Pacific J. Math. , 215 , 297–312, 2004.
[15] E. Feireisl and J. M´alek. On the Navier- Stokes equations with temperature depen-
dent transport coefficients. Differ. Equ. Nonl. Mech., Art. Id 90616, 2006.
[16] E. Feireisl. On the motion of rigid bodies in a viscous compressible fluid. Arch.
Rational Mech. Anal., 167, 281–308, 2003.
[17] E. Feireisl, M. Hillairet and
ˇ
S. Neˇcasov´a. On the motion of several rigid bodies in an
incompressible non-Newtonian fluid. Nonlinearity, 21, 1349–1366, 2008.
[18] E. Feireisl and A. Novotn´y. Singular limits in thermodynamics of viscous fluids.
Birkh¨auser, Basel, 2008.
[19] E. Feireisl, J. Neustupa, J. Stebel. Convergence of a Brinkman-type penalization for
compressible fluid flows. Preprint of the Necas Centrum, 2010.
[20] J. Frehse, J. M´alek and M. R˚uˇziˇcka. Large data existence result for unsteady flows
of inhomogeneous heat-conducting incompressible fluids. Preprint of the Necas Cen-
trum, 2008.
[21] J. Frehse and M. R˚uˇziˇcka. Non-homogeneous generalized Newtonian fluids. Math.
Z., 260, 35–375, 2008.
[22] G.P. Galdi. On the steady self-propelled motion of a body in a viscous incompressible
fluid. Arch. Rat. Mech. Anal., 148, 53–88, 1999.
[23] G.P. Galdi. On the motion of a rigid body in a viscous fluid: A mathematical analysis
with applications. Handbook of Mathematical Fluid Dynamics, Vol. I, Elsevier Sci.,
Amsterdam, 2002.
[24] D. G´erard-Varet and M. Hillairet. Regularity issues in the problem of fluid structure
interaction. Archive for Rational Mechanical Analysis. In press.
[25] M.D. Gunzburger, H.C. Lee, and A. Seregin. Global existence of weak solutions
for viscous incompressible flow around a moving rigid body in three dimensions. J.
Math. Fluid Mech., 2, 219–266, 2000.
[26] T.I. Hesla. Collision of smooth bodies in a viscous fluid: A mathematical investiga-
tion. 2005. PhD Thesis – Minnesota.
[27] M. Hillairet. Lack of collision between solid bodies in a 2D incompressible viscous
flow. Comm. Partial Differential Equations, 32, 7-9, 1345–1371, 2007. Preprint –
ENS Lyon.
[28] M. Hillairet and T. Takahashi. Collisions in three dimensional fluid structure inter-
action problems SIAM J. Math. Anal., 40, 6, 2451–2477, 2009