Stochastic Integral Equations 165
[19] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Frac-
tional Differential Equations, North-Holland Mathematical Studies 204, Elsevier,
Amsterdam 2006.
[20] N.V. Krylov, A parabolic Littlewood-Paley inequality with applications to para-
bolic equations, Topological Methods in Nonlinear Analysis, Journal of the Juliusz
Schauder Center 4 (1994), 355–364.
[21] N.V. Krylov, An analytic approach to SPDEs. In Stochastic Partial Differential
Equations: Six Perspectives, R.A. Carmona and B. Rozovskii, eds., A.M.S. Mathe-
matical Surveys and Monographs, 64 (1999), 185–242.
[22] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,
Birkh¨auser, Basel, 1995.
[23] J. Marcinkiewicz and A. Zygmund, Quelques in´egalit´es pour les op´erations lin´eaires,
Fund. Math., 32 (1939), 115–121.
[24] M.M. Meerschaert, D.A. Benson, H.-P. Scheffler and B. Baeumer, Stochastic solution
of space-time fractional diffusion equations, Phys. Rev. E (3) 65 (2002) no. 4, 041103,
4pp.
[25] R. Metzler and J. Klafter, The fractional Fokker-Planck equation: dispersive trans-
port in an external force field, J. of Molecular Liquids 86 (2000), 219–228.
[26] J. van Neerven, M.C. Veraar, and L. Weis, Stochastic integration in UMD Banach
spaces, Ann. Prob. 35 (2007), 1438–1478.
[27] J. van Neerven, M.C. Veraar, and L. Weis, Stochastic evolution equations in UMD
Banach spaces, J. Funct. Anal. 255 (2008), 940–993.
[28] J. Pr¨uss, Quasilinear parabolic Volterra equations in spaces of integrable functions. In
Semigroup Theory and Evolution Equations, B. de Pagter, Ph. Cl´ement, E. Mitidieri,
eds., Lect. Notes Pure Appl. Math., 135 (1991), 401–420, Marcel Dekker.
[29] J. Pr¨uss, Evolutionary Integral Equations and Applications,Birkh¨auser, Basel, 1993.
[30] J. Pr¨uss and H. Sohr, Imaginary powers of elliptic second order differential operators
in L
p
-spaces, Hiroshima Mathematical J., 23 (1993), 161–192.
[31] J. Pr¨uss, Poisson estimates and maximal regularity for evolutionary integral equa-
tions in L
p
-spaces, Rend. Istit. Mat. Univ. Trieste, XXVIII (1997), 287–321.
[32] Ph. Protter, Stochastic Integration and Differential Equations, Springer-Verlag,
Berlin, 1990.
[33] S. Sperlich, On parabolic Volterra equations disturbed by fractional Brownian mo-
tions, Stoch. Anal. Appl. 27 (2009), 74–94.
[34] S. Sperlich and M. Wilke, Fractional white noise perturbations of parabolic Volterra
equations, J. Appl. Anal. 16 (2010), 31–48.
[35] E.M. Stein, Singular Integrals and Differentiability Properties of Functions,Prince-
ton University Press, Princeton, 1970.
[36] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,North-
Holland, Amsterdam, 1978.
[37] M.C. Veraar, Stochastic Integration in Banach Spaces and Applications to Parabolic
Evolution Equations, Ph.D. thesis, TU Delft, 2006.
[38] M.C. Veraar, Non-autonomous stochastic evolution equations and applications to
stochastic partial differential equations, J. Evol. Equ. 10 (2010), 85–127.