208 J. Escher, M. Kohlmann and B. Kolev
Acknowledgment
The authors would like to thank Mats Ehrnstr¨om and Jonatan Lenells for several
fruitful discussions as well as the referee for helpful remarks.
References
[1] V.I. Arnold, Sur la g´eom´etrie diff´erentielle des groupes de Lie de dimension infinie et
ses applications `a l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Greno-
ble), 16 (1966), 319–361.
[2] V.I. Arnold, Mathematical Methods of Classical Mechanics. Springer, 1989.
[3] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and
applications to nonlinear evolution equations II: The KdV equation. Geom. Funct.
Anal., 3 (1993), 209–262.
[4] R. Camassa and D.D. Holm, An integrable shallow water equation with peaked soli-
tons. Phys. Rev. Lett., 71 (1993), 1661–1664.
[5] A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenom-
ena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math., 51
(1998), 475–504.
[6] A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water
equations. Acta Math., 181 (1998), 229–243.
[7]A.ConstantinandJ.Escher,Global weak solutions for a shallow water equation.
Indiana Univ. Math. J., 47 (1998), 1527–1545.
[8] A. Constantin and B. Kolev, On the geometric approach to the motion of inertial
mechanical systems. J. Phys. A, 35 (2002), R51–R79.
[9] A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle.
Comment. Math. Helv., 78 (2003), 787–804.
[10] A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm
and Degasperis-Procesi equations. Arch. Ration. Mech. Anal., 192 (2009), 165–186.
[11] C. De Lellis, T. Kappeler, and P. Topalov, Low regularity solutions of the periodic
Camassa-Holm equation. Comm. in PDE, 32 (2007), 82–126.
[12] A. Degasperis and M. Procesi, Asymptotic integrability. Symmetry and perturbation
theory. (eds. A. Degasperis and G. Gaeta), Singapore: World Scientific (1999), 23–27.
[13] A. Degasperis, D.D. Holm, and A.N.I. Hone, A new integrable equation with peakon
solutions. Teoret. Mat. Fiz., 133 (2002), 170–183.
[14] H.R. Dullin, G. Gottwald, and D.D. Holm, On asymptotically equivalent shallow
water wave equations. Phys. D, 190 (2004), 1–14.
[15] D.G. Ebin and J. Marsden, Groups of diffeomorphisms and the notion of an incom-
pressible fluid. Ann. of Math., 92 (1970), 102–163.
[16] J. Escher, Wave breaking and shock waves for a periodic shallow water equation.
Phil. Trans. R. Soc. A, 365 (2007), 2281–2289.
[17] J. Escher and B. Kolev, The Degasperis-Procesi equation as a non-metric Euler
equation, to appear in Math. Z., 2011.
[18] J. Escher and J. Seiler, The periodic b-equation and Euler equations on the circle. J.
Math. Phys., 51 (2010).