•
Y
t
=
F (K
t
, L
t
)
•
(1 + n) L
t+1
= (1 + n)L
t
L
t
= (1 + n)
t
L
0
•
K
t+1
− K
t
= sY
t
− bK
t
,
s ∈ (0, 1)
b
F (K, L)
F (λK, λL) = λF (K, L) ∀λ ≥ 0
k
t
= K
t
/L
t
k
t+1
=
K
t+1
L
t+1
=
sF (K
t
, L
t
) + (1 − b)K
t
(1 + n)L
t
=
s
1 + n
f(k
t
) +
1 − b
1 + n
k
t
,
f(k) = F (k , 1),
Y
t
L
t
=
F (K
t
, L
t
)
L
t
= F
µ
K
t
L
t
, 1
¶
= F (k, 1).
k
t+1
= g(k
t
), g(k) =
s
1 + n
f(k) +
1 − b
1 + n
k. (2.51)
F (K, L) = AK
α
L
1−α
, A > 0, α ∈ (0, 1). (2.52)
f(k) = Ak
α
g(k) z = k k = 0
k
∗
> 0
k
0
> 0