R
x
1
, x
2
∈ R x
1
< x
2
[x
1
, x
2
]
f(x
2
) − f(x
1
) = f
0
(c)(x
2
− x
1
), c ∈ (x
1
, x
2
).
|f(x
2
) − f(x
1
)| = |f
0
(c)||x
2
− x
1
| ≤ k|x
2
− x
1
|, k ∈ (0, 1).
x
1
, x
2
∈ R f
R R 2
f(x) =
1
2
cos x R
|f
0
(x)| =
1
2
|sin x| ≤
1
2
f(x) = cos x [0, b]
b < π/2
|f
0
(x)| = |sin x| = sin x ≤ sin b < 1,
f : [0, b] → R k = sin b
b = π/2 f : [0, π/2] → R
|f
0
(x)| = sin x ≤ 1 [0, π/2]
[0, π/2]
2
f
x
∗
∈
f f(x
∗
) = x
∗
x
0
∈ x
t+1
= f(x
t
)
x
∗
t → ∞ x
∗
f
x
0
∈ S
R R
+
[a, b]
x
0
∈ S
|x
2
− x
1
| = |f(x
1
) − f(x
0
)| ≤ k|x
1
− x
0
|,