PROPERTIES OF THE REGRESSION COEFFICIENTS
22
We will illustrate this with the price inflation/wage inflation model (3.39). Suppose that for some
reason we know that the standard deviation of b
2
is equal to 0.1. Then, if our null hypothesis
H
0
:
β
2
= 1 is correct, regression estimates would be distributed as shown in Figure 3.7. You can see
that, provided that the null hypothesis is correct, the estimates will generally lie between 0.8 and 1.2.
Compatibility, Freakiness and the Significance Level
Now we come to the crunch. Suppose that we take an actual sample of observations on average rates
of price inflation and wage inflation over the past five years for a sample of countries and estimate
β
2
using regression analysis. If the estimate is close to 1.0, we should almost certainly be satisfied with
the null hypothesis, since it and the sample result are compatible with one another, but suppose, on the
other hand, that the estimate is a long way from 1.0. Suppose that it is equal to 0.7. This is three
standard deviations below 1.0. If the null hypothesis is correct, the probability of being three standard
deviations away from the mean, positive or negative, is only 0.0027, which is very low. You could
come to either of two conclusions about this worrisome result:
1. You could continue to maintain that your null hypothesis H
0
:
β
2
= 1 is correct, and that the
experiment has given a freak result. You concede that the probability of such a low value of
b
2
is very small, but nevertheless it does occur 0.27 percent of the time and you reckon that
this is one of those times.
2. You could conclude that the hypothesis is contradicted by the regression result. You are not
convinced by the explanation in (1) because the probability is so small and you think that a
much more likely explanation is that
β
2
is not really equal to 1. In other words, you adopt the
alternative hypothesis H
1
:
β
2
≠
1 instead.
How do you decide when to choose (1) and when to choose (2)? Obviously, the smaller the
probability of obtaining a regression estimate such as the one you have obtained, given your
hypothesis, the more likely you are to abandon the hypothesis and choose (2). How small should the
probability be before choosing (2)?
There is, and there can be, no definite answer to this question. In most applied work in
economics either 5 percent or 1 percent is taken as the critical limit. If 5 percent is taken, the switch to
(2) is made when the null hypothesis implies that the probability of obtaining such an extreme value of
b
2
is less than 5 percent. The null hypothesis is then said to be rejected at the 5 percent significance
level.
This occurs when b
2
is more than 1.96 standard deviations from
0
2
. If you look up the normal
distribution table, Table A.1 at the end of the text, you will see that the probability of b
2
being more
than 1.96 standard deviations above its mean is 2.5 percent, and similarly the probability of it being
more than 1.96 standard deviations below its mean is 2.5 percent. The total probability of it being
more than 1.96 standard deviations away is thus 5 percent.
We can summarize this decision rule mathematically by saying that we will reject the null
hypothesis if
z > 1.96 or z < –1.96 (3.42)