680 References
Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard
and relative partial molal properties to 600
◦
C and 5 KB. Am. J. Sci., 281, 1249–1516.
Herbert, F. (1989). Primordial electrical induction heating of asteroids. Icarus, 78, 402–410.
Herbert, F. & Sonett, C. P. (1979). Electromagnetic heating of minor planets in the early
solar system. Icarus, 40, 484–496.
Herzberg, C., Raterron, P. & Zhang, J. (2000). New experimental observations on
the anhydrous solidus for peridotite KLB−1. Geochem. Geophys. Geosyst., 1.
doi:10.1029/2000GC000089.
Hill, T. L. (1986). An Introduction to Statistical Thermodynamics. Dover, New York, 508 pp.
Hirschmann, M. M., Asimow, P. D., Ghiorso, M. S. & Stolper, E. M. (1999a). Calculation of
peridotite partial melting from thermodynamic models of minerals and melts. III. Controls
on isobaric melt production and the effect of water on melt production. J. Petrol., 40,
831–851.
Hirschmann, M. M., Ghiorso, M. S. & Stolper, E. M. (1999b). Calculation of peridotite
partial melting from thermodynamic models of minerals and melts. II. Isobaric variations
in melts near the solidus and owing to variable source composition. J. Petrol., 40, 297–
313.
Hirschmann, M. M., Ghiorso, M. S., Wasylenski, L. E., Asimow, P. D. & Stolper, E. M.
(1998). Calculation of peridotite partial melting from thermodynamic models of minerals
and melts. I. Review of methods and comparison with experiments. J. Petrol., 39, 1091–
1115.
Hirschmann, M. M. (2006). Water, melting and the deep H
2
O cycle. Ann. Rev. Earth Planet.
Sci., 34, 629–653.
Hirschmann, M. M., Aubaud, C. & Withers, A. C. (2005). Storage capacity of H
2
O
in nominally anhydrous minerals in the upper mantle. Earth Pl. Sci. Letters, 236,
167–181.
Hirschmann, M. M., Tenner, T., Aubaud, C. & Withers, A. C. (2009). Dehydration melting
of nominally anhydrous mantle: the primacy of partitioning. Phys. Earth Planet. Int.,
176, 54–68.
Holbrook, J. B., Sabry-Grant, R., Smith, B. C. & Tandel, T. V. (1990). Lattice enthalpies of
ionic halides, hydrides, oxides, and sulfides: second-electron affinities of atomic oxygen
and sulfur. J. Chem. Educ., 67, 304–307.
Holland, T. J. B., & Powell, R. (1998). An internally consistent thermodynamic data set for
phases of petrological interest. J. Met. Geol., 16, 309–343.
Holloway, J. R. (1987). Igneous fluids. In: Thermodynamic Modeling of Geological
Materials: Minerals, Fluids and Melts. Reviews in Mineralogy, 17, 211–233.
Holloway, J. R. & Wood, B. (1988). Simulating the Earth: Experimental Geochemistry.
Unwin-Hyman, Boston, 196 pp.
Houston, P. L. (2006). Chemical Kinetics and Reaction Dynamics. Dover, NewYork, 330 pp.
Huang, F., Chakraborty, P., Lundstrom, C. C., et al. (2010). Isotope fractionation in silicate
melts by thermal diffusion. Nature, 464, 396–400.
Hubbard, W. B. (1970). Structure of Jupiter: chemical composition, contraction and rotation.
Astrophys. J., 162, 687–697.
Hubbard, W. B. (1980). Intrinsic luminosities of the Jovian planets. Rev. Geophys. Space
Phys., 18, 1–9.
Hubbard, W. B. (1984). Planetary Interiors. Van Nostrand Reinhold, New York, 334 pp.
Hubbard, W. B., Guillot, T., Marley, M. S. et al. (1999). Comparative evolution of Jupiter
and Saturn. Planet. Space Sci., 47, 1175–1185.