134 INTERSECTION AND UNION OF SUBSPACES CHAPTER 5
Table5.1: The order of the arguments for a computed meet may affect the sign of the result.
This table shows the signs for some common geometrical situations. A plus denotes no sign
change, a minus a change. The vector space model in which all elements pass through the
origin is denoted as orig. This is the algebra of the homogeneous subspaces in Part I.
For convenient referencing, we
have also listed some results for the 4D homogeneous
model (hom) and the 5D conformal model of 3-dimensional Euclidean space (conf ), which will
only be treated in Part II. In the bottom block, ‘line’ and ‘plane’ can always substituted for
‘circle’ and ‘sphere’. The order sensitivity does not depend on the model used, since only the
‘co-dimensions’ (j − a) and (j − b) matter.
Elements in meet join Space a,b,j
orig
a,b,j
hom
a,b,j
conf
Sign
Two origin points Point 0,0,0 1,1,1 2,2,2 +
Origin point and origin line Line 0,1,1 1,2,2 2,3,3 +
Two origin lines Plane 1,1,2 2,2,3 3,3,4 −
Two origin lines Line 1,1,1 2,2,2 3,3,3 +
Two origin planes Space 2,2,3 3,3,4 4,4,5 −
Origin line and origin plane Space 1,2,3 2,3,4 3,4,5 +
Origin line and origin plane Plane 1,2,2 2,3,3
3,4,4 +
Two parallel lines Plane 2,2,3 3,3,4 −
Two intersecting lines Plane 2,2,3 3,3,4 −
Two skew lines Space 2,2,4 3,3,5 +
Two intersecting planes Space 3,3,4 4,4,5 −
Two parallel planes Space 3,3,4 4,4,5 −
Line and plane Space 2,3,4 3,4,5 +
Line and plane Plane 2,3,3 3,4,4 +
Point and line Plane 1,2,3 2,3,4 +
Point and plane Space 1,3,4 2,4,5 −
Point and circle Sphere 1,3,4 +
Point an
d sphere Space 1,4,5 +
Point pair and circle Sphere 2,3,4 +
Point pair and sphere Sphere 2,4,4 +
Circle and sphere Space 3,4,5 +
Circle and sphere Sphere 3,4,4 +
Circle and circle Space 3,3,5 +
Circle and circle Sphere 3,3,4 −
Tangent vector and sphere Sphere 2,4,4 +
Sphere and sphere Space 4,4,5 −