25.2 Quasi h-Distances
387
(a.)
2d(K
6
\e12) + 8({1}) 8({2})
+8({1,3}) +8({1,4})
+ 8({1,5}) + 8({I,B}),
(b)
2d(K
6
\e12)
+8({1,2})
28({1}) + 28({2}) + 8({3}) + 8({4}) + 8({5}) +8({B}),
2d(K
6
\e12) + 8(
{I,
3})
==
8(
{2}) + 8(
{I,
3}) + 8( {3, 4, 5}) + 8( {3, 4, B})
(e)
(d)
(e)
(f)
+8({4,5,B}),
2d(K
6
\e12) + 8({3,4}) = 8({1}) + 8({3}) + 8({4}) + 8({2,5})
+8(
{2,
B})
+ 8( {2,
3,4}),
2d(K
6
\e12)
+8({1,2,3})
==
8({1}) + 8({2}) + 8({4})
+8({5})
+ 8({6})
2d(K
6
\en}
+ 8({1,3,4}) =
+8({1,3})
+8({2,3}),
8({1,3}) + 8({1,4}) + 8({2,5}) + 8({2,B})
+8({1,5,B}),
8({1}) + 8({2,3}) +
8(
{2,4}) + 8({2, 5}) + 8( {3,B})
+8(
{I,
2,
B})
+ 8({1, 3,4}) + 8( {1,3, 5}),
(h)
2d(K6\e12) +
2d(K
6
\e34)
==
8({1}) + 8({2,3}) + 8({2,4}) + 8({3,5}) + 8({4,6})
+8({1,3,4})
+ 8({1,3,B}) +
8({1,4,5}),
(i)
2d(K
6
\e12) + 8({3}) + 8({4})
==
8({1,3}) + 8({2,4}) + 8({3,4}) +
8({1,4,5})
+8({1,4,6}).
Proof
of
Corollary 25.2.3. Let d be a quasi h-distance on
V6.
Then, by Theo-
rem 25.2.2,
d can be
written
as
d =
L>~s6(S)
+
2:
i3ij2d(K6\eij)
s
I$i<iS6
with
as,
i3ij
E Z+.
We
can suppose
that
i3ij
E
{O,
I} for all i,
j,
because
4d(K
6
\eij)
is hypercube embeddable. Using (g) and (h),
we
can rewrite d as
d =
2:a86(S)
+
2d(K
6
\e),
S
where
as
E and, for instance, e is
the
edge (1,2). From relations (a)-(f),
we
deduce
that
as
= 0
if
S =
{I},
or {2},
or
if
lSI
=
2,
or
3.
Therefore, using
relation (i),
we
obtain
that
d
2d(K
6
\e12)
+
m6({i}),
where i E
{3,
4,5,6} and
mE
Z+. I
As
we
just
saw, there
is
an
infinity
of
quasi h-distances on V
n
,
for any n
~
6.
However,
it
follows from Lemma 4.3.9
that
there exists
an
integer
'fin
which
is
a
common scale for all quasi h-distances
don
V
n
, i.e., such
that
'find
is
hypercube
embeddable for all quasi h-distances
d.
As
an
application
of
Corollary 25.2.3,
we
have:
Corollary
25.2.4.
We have:
'fI6
2.
In
other words,
2d
is hypercube embed-
dable for every integer valued distance d on
6 points which is iI-embeddable and
satisfies the parity condition
(24.1.1). I