
158 4 Dynamic Force Analysis
Using MATLAB the previous equations are:
eqF4x=eqF4(1);
eqF4y=eqF4(2);
Equations 4.61 and 4.62 can be written numerically as
F
34x
−F
45x
−0.0204384 = 0 and F
34y
−F
45y
−0.0567590 = 0.
The vector sum of the moments that act on slider 4 with respect to the center of mass
D = C
4
is equal to I
C
4
α
4
I
C
4
α
4
= r
C
4
P
×F
54
, (4.63)
or in MATLAB:
eqMC4=cross(rP-rC4,F54)-IC4
*
Alpha4;
eqMC4z=eqMC4(3);
The numerical expression of Eq. 4.63 is
−(x
P
+ 0.147297)F
45y
+(y
P
−128347)F
45x
−(0.235748)10
−4
= 0.
There are eight equations (Eqs. 4.56–4.63) with eight unknowns F
05x
, F
05y
, F
45x
,
F
45y
, x
P
, y
P
, F
34x
, and F
34y
. The system is solved using MATLAB:
sol45=solve(eqF5x,eqF5y,eqMC5z,eqF45DE,eqPz,...
eqF4x,eqF4y,eqMC4z);
F05xs=eval(sol45.F05x);
F05ys=eval(sol45.F05y);
F05s=[ F05xs, F05ys, 0 ];
F45xs=eval(sol45.F45x);
F45ys=eval(sol45.F45y);
F45s=[ F45xs, F45ys, 0 ];
F34xs=eval(sol45.F34x);
F34ys=eval(sol45.F34y);
F34s=[ F34xs, F34ys, 0 ];
yPs=eval(sol45.yP);
rPs=[xPs, yPs, 0];
The following numerical solutions are obtained
F
05
= 336.192ı + 386.015 j N,
F
45
= −336.197ı −385.834 j N,
F
34
= −336.176ı −385.777 j N, and
r
P
= −0.147297ı + 0.128347 j m.