
144 4 Dynamic Force Analysis
∑
M
(2)
C
= r
CB
×F
12
+ r
CC
2
×(F
in2
+ G
2
)+M
in2
= 0,
ıj
k
x
B
−x
C
y
B
−y
C
0
F
12x
F
12y
0
+
ıj
k
x
C
2
−x
C
y
C
2
−y
C
0
F
in2x
F
in2y
−m
2
g 0
+ M
in2
k = 0,
or numerically
−
1
2
+
5
√
2
2
−
F
12x
√
2
2
−
F
12y
√
2
2
= 0. (4.51)
Continuing on path I, an equation for the forces projected onto the sliding direction
of the joint C
T
is written for links 2 and 3
∑
F
(2&3)
·ı =(F
12
+ F
in2
+ G
2
+ F
in3
+ G
3
+ F
ext
) ·ı
= F
12x
+ F
in2x
+ F
in3x
+ F
ext
= F
23x
+ 100 +
√
2 +
3
√
2
2
= 0. (4.52)
The joint force F
12
is obtained from the system of Eqs. 4.52 and 4.51
F
12x
= −
1
4
(400 + 7
√
2) N and F
12y
=
5
4
(84 +
√
2) N.
The MATLAB statements for finding F
12
are:
% Joint B
R
F12 = [ sym(’F12x’,’real’) sym(’F12y’,’real’) 0 ];
eqM2C = cross(rB-rC,F12)+cross(rC2-rC,Fin2+G2)+Min2;
eqM2Cz = eqM2C(3);
eqF23 = (F12+Fin2+G2+G3+Fin3+Fe);
eqF23x = eqF23(1);
fprintf(’%s=0(4)\n’, char(vpa(eqM2Cz,6)))
fprintf(’%s=0(5)\n’, char(vpa(eqF23x,6)))
fprintf(’Eqs(4)-(5) => F12x, F12y \n’)
solF12 = solve(eqM2Cz,eqF23x);
F12xs = eval(solF12.F12x);
F12ys = eval(solF12.F12y);
F12s = [ F12xs, F12ys, 0 ];
fprintf(’F12 = [ %g, %g, %g ] (N)\n’, F12s)
Reaction F
01
and Equilibrium Moment M
The pin joint A
R
, between 0 and 1, is replaced with the unknown reaction (Fig. 4.26)
F
01
= F
01x
ı + F
01y
j.
The unknown equilibrium moment is M = M k. If the path I is followed (Fig. 4.26)
for the pin joint B
R
, a moment equation is written for link 1