Uhlmann
343
[30] V. Isakov and J. Sylvester, Global uniqueness for a semilinear elliptic
inverse problem, Comm. Pure Appl. Math. 47 (1994), 1403-1410.
(31] R. Kohn and M. Vogelius, Determining conductivity by boundary mea-
surements, Comm. Pure App. Math. 38 (1985), 643-667.
[32] , Determining
conductivity by boundary measurements II. Inte-
rior results, Comm. Pure Appl. Math. 38 (1985), 644-667.
[33] ,
Identification of an unknown conductivity by means of mea-
surements at the boundary, in Inverse Problems, edited by D. McLaugh-
lin, SIAM-AMS Proc. no. 14, Amer. Math. Soc., Providence (1984),
113-123.
[34] J. Lee and G. Uhlmann, Determining anisotropic real-analytic conduc-
tivities by boundary measurements, Comm. Pure Appl. Math 42 (1989),
1097-1112.
[35] A. Nachman, Reconstructions from boundary measurements, Annals of
Math. 128 (1988), 531-587.
[36]
, Global uniqueness
for a two-dimensional inverse boundary value
problem, Annals of Math (1996), 71-96.
[37] A. Nachman and M. Ablowitz, A multidimensional inverse scattering
method, Studies in App. Math. 71 (1984), 243-250.
[38] G. Nakamura and Z. Sun, An inverse boundary-value problem for St.
Venant-Kirchhof materials, Inverse Problems 10 (1994), 1159-1163.
[39] G. Nakamura and G. Uhlmann, Global uniqueness for an inverse bound-
ary value problem arising in elasticity, Invent. Math. 118 (1994), 457-474:
[40]
, Inverse
problems at the boundary for an elastic medium, SIAM
J. Math. Anal. 26 (1995), 263-279.
[41] ,
Identification of Lame parameters by boundary measurements,
American Journal of Math. 115 (1993), 1161-1187.
[42] G. Nakamura, G. Uhlmann, and Z. Sun, Global identifiability for an
inverse problem for the Schrodinger equation in a magnetic field, Math.
Ann. 303 (1995), 377-388.
(43] J. C. Newell, D. Isaacson, M. Cheney, G. J. Saulnier, and D. G. Gisser,
Acute pulmonary edema assessed by electrical impedance imaging, Pro-
ceedings IEEE-EMBS Conf. 14 (1993), 92-93.