282
Chapter 17: Expansions for Atiyah-Patodi-Singer Problems
[4] N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators
Springer-Verlag, Berlin, 1992.
[5] T. Branson and P. B. Gilkey, The asymptotics of the Laplacian on a
manifold with boundary, Comm. Part. Diff. Eq. 15 (1990), 245-272.
[6] A. P. Calderon, Boundary value problems for elliptic equations, Outlines of
the Joint Soviet-American Symposium on Partial Differential Equations,
Novosibirsk, August, 1963, 303-304.
[7] T. Carleman, Proprietes asymptotiques des fonctions fondamentales des
membranes vibrantes, C. R. Congr. Math. Scand. Stockholm (1934),
34-44.
[8] J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic
operators and periodic bicharacteristics, Inventiones Math. 29 (1975), 3-
79.
[9] P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer
Index Theorem, CRC Press, Boca Raton, 1995.
[10] P. Greiner, An asymptotic expansion for the heat equation, Arch. Rat.
Mech. Anal. 41 (1971), 163-218.
[11] G. Grubb, Heat operator trace expansions and index for general Atiyah-
Patodi-Singer boundary problems, Comm. P. D. E. 17 (1992), 2031-2077.
[12] G. Grubb and R. Seeley, Weakly parametric pseudo-differential operators
and Atiyah-Patodi-Singer problems, Inventiones Math. 121 (1995), 481-
529.
[13] , Zeta and eta functions for Atiyah-Patodi-Singer operators, Jour-
nal of Geometric Analysis 6 (1996), 31-77.
[14] ,
Developpements asymptotiques pour l'operateur d'Atiyah-Patodi-
Singer, C. R. Acad. Sci. Paris 317 (1993), 1123- 1126.
[15] S. Minakshisundaram and A. Pleijel, Some properties of the eigenfunc-
tions of the Laplace operator on Riemannian manifolds, Can. J. Math. 1
(1949),242-256.
[16] V. K. Patodi, Curvature and the fundamental solution of the heat oper-
ator, J. Indian Math. Soc. 34 (1970), 269-285; Curvature and the eigen-
forms of the Laplace operators, J. Differential Geom. 5 (1971), 233-249;
An analytic proof of the Riemann-Roch-Hirzebruch theorem for Kahler