Modified de Broglian Mechanics 311
There were some other proposals for computing probability in the extended
complex plane. One such attempt [26] is to define ρ(x) =
¯
Ψ(x)Ψ(x) where
¯
Ψ(x) ≡
Ψ
(x
), with x complex. The complexified flux is chosen as j(x, t ) = v(x, t )ρ(x, t ) =
−(i/m)Ψ
(x
)Ψ
where v(x, t) ≡˙x is given by Equation 19.10 and the prime denotes
spatial differentiation. With the help of the time-dependent Schrödinger equation, the
author shows that, in general, ∂ρ/∂t = j
(x, t ). This arguably leads to nonconserva-
tion of probability along trajectories. But we should remember that this negative result
is based on the choices made in [26] for the probability density and flux. Moreover,
this definition leads to a complex probability off the real axis, which is undesirable.
Another approach is to define the probability as Ψ
(x)Ψ(x) itself [27,28]. Though this
has the advantage of being real everywhere, it is not shown to obey any continuity
equation anywhere. Nor is it generally a normalizable probability in the extended
plane.
Notwithstanding a host of other issues to be solved for the new mechanics, the fact
that it can account for Born’s rule in terms of the velocity field raises our hopes for a
deeper understanding of quantum probability.
BIBLIOGRAPHY
1. H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA, 1980.
2. L. de Broglie, Ph.D. Thesis, University of Paris, 1924.
3. L. de Broglie, J. Phys. Rad., 6
e
serie, t. 8, (1927) 225.
4. G. Bacciagaluppi, A. Valentini, Quantum Theory at the Crossroads, Cambridge University
Press, Cambridge, 2009; quant-ph/0609184v1 (2006).
5. D. Bohm, Phys. Rev. 85 (2), 166 (1952) 180.
6. E.R. Floyd, Phys. Rev. D 26 (1982) 1339.
7. A. Faraggi, M. Matone, Phys. Lett. B 450 (1999) 34.
8. R. Carroll, J. Can. Phys. 77 (1999) 319.
9. M.V. John, Found. Phys. Lett. 15 (2002) 329; quant-ph/0102087 (2001).
10. C.D. Yang, Phys. Lett. A 372 (2008) 6240.
11. G. Wentzel, Z. Phys. 38 (1926) 518; W. Pauli, in: H. Geiger, K. Scheel (Ed.), Handbuch
der Physik, 2nd ed., Vol. 24, part 1, Springer-Verlag, Berlin, 1933, pp. 83–272; P.A.M.
Dirac, The Principles of Quantum Mechanics, Oxford University Press, London, 1958.
12. R.A. Leacock, M.J. Padgett, Phys. Rev. Lett. 50 (1983) 3; R.A. Leacock, M.J. Padgett,
Phys. Rev. D 28, (1983) 2491.
13. R.S. Bhalla, A.K. Kapoor, P.K. Panigrahi, Am. J. Phys. 65 (1997) 1187; R.S. Bhalla,
A.K. Kapoor, P.K. Panigrahi, Mod. Phys. Lett. A 12 (1997) 295.
14. A.S. Sanz, S. Miret-Artés, J. Chem. Phys. 127 (2007) 197101.
15. Y. Goldfarb, I. Degani, D.J. Tannor, J. Chem. Phys. 127 (2007) 197102.
16. C.-D. Yang, Ann. Phys. (N.Y.) 319 (2005) 339; C.-D. Yang, Int. J. Quantum Chem. 106
(2006) 1620; C.-D. Yang, Ann. Phys. (N.Y.) 319 (2005) 444; C.-D. Yang, Chaos, Solitons
Fractals 30 (2006) 342.
17. C.-C. Chou, R.E. Wyatt, Phys. Rev. E 74 (2006) 066702; C.-C. Chou, R.E. Wyatt, J. Chem.
Phys. 125 (2007) 174103.
18. R.E. Wyatt, Quantum Dynamics with Trajectories: Introduction to Quantum Hydrody-
namics, Springer, New York, 2005.
19. Y. Goldfarb, I. Degani, D.J. Tannor, J. Chem. Phys. 125 (2006) 231103.