VIII Table of Contents
4 The three–body problem and the Lagrangian solutions ....... 63
4.1 Therestricted three–body problem ........................... 63
4.1.1 Theplanar,circular, restricted three–body problem ...... 63
4.1.2 Expansion of the perturbing function . . . ................ 65
4.1.3 The planar, elliptic, restricted three–body problem ....... 67
4.1.4 Theinclined, circular, restricted three–body problem ..... 67
4.2 The circular, restricted Lagrangian solutions . .................. 68
4.3 The elliptic, restricted Lagrangian solutions . . .................. 73
4.4 The elliptic, unrestricted triangular solutions ................... 76
5 Rotational dynamics .......................................... 83
5.1 Eulerangles ............................................... 83
5.2 Andoyer–Depritvariables.................................... 85
5.3 Freerigidbodymotion...................................... 87
5.4 Perturbedrigidbodymotion................................. 89
5.5 Thespin–orbit problem ..................................... 91
5.5.1 Theconservativespin–orbit problem.................... 91
5.5.2 Theaveragedequation................................ 94
5.5.3 Thedissipative spin–orbit problem ..................... 95
5.5.4 Thediscrete spin–orbit problem........................ 96
5.6 Motionaroundanoblate primary............................. 97
5.7 Interactionbetween two bodiesoffinitedimensions ............. 98
5.8 The tether satellite ......................................... 99
5.9 The dumbbell satellite . . . ................................... 103
6 Perturbation theory .......................................... 107
6.1 Nearly–integrableHamiltonian systems........................ 107
6.2 Classical perturbationtheory ................................ 108
6.2.1 Anexample ......................................... 110
6.2.2 Computation of the precession of the perihelion . . . ....... 112
6.3 Resonantperturbationtheory................................ 112
6.3.1 Three–bodyresonance................................ 114
6.4 Degenerateperturbation theory .............................. 115
6.4.1 The precession of the equinoxes . . ...................... 116
6.5 Birkhoff’s normal form...................................... 118
6.5.1 Normal form around an equilibrium position ............. 118
6.5.2 Normalformaround closed trajectories ................. 121
6.6 Theaveragingtheorem...................................... 121
6.6.1 Anexample ......................................... 124
7 Inv ariant tori ................................................. 127
7.1 Theexistence of KAM tori .................................. 127
7.2 KAMtheory............................................... 131
7.2.1 TheKAMtheorem................................... 131
7.2.2 The initial approximation and the estimate
oftheerror term..................................... 140
7.2.3 Diophantinerotationnumbers ......................... 143