
recording media. The achieved structural size of
0.5 0.5 mm (Kubota et al. 2000) opens the perspec-
tive that the noise caused by a statistical grain en-
semble is reduced by a structured media.
See also: Magnetic Films: Anisotropy; Magnetic
Layers: Anisotropy
Bibliography
Araki T, Nakanishi T, Umemura T 1999 Texture of Nd–Fe–B
thin-films prepared by magnetron sputtering. J. Appl. Phys.
85 (8), 4877–9
Aylesworth K D, Zhao Z R, Sellmyer D J, Hadjipanayis G C
1989 Growth and control of the microstruture and magnetic
properties of sputtered Nd
2
Fe
14
B films and multilayers.
J. Magn. Magn. Mater. 82, 46–56
Belmans R, Hameyer K 1998 Electromagnetic and design as-
pects of magnetic mini-actuators. Proc. 6th Int. Conf. New
Actuators. Bremen, Germany pp. 537–40
Cadieu F J 1987 High coercive force and large remanent mo-
ment magnetic films with special anisotropies. J. Appl. Phys.
61 (8), 4105–10
Fa
¨
hler S, Kahl S, Weisheit M, Sturm K, Krebs H U 2000 The
interface of laser deposited Cu/Ag multilayers: evidence of
the ‘‘subsurface growth mode’’ during pulsed laser deposi-
tion. Appl. Surf. Sci. 154–5, 419–23
Fa
¨
hler S, Krebs H U 1996 Calculations and experiments of
material removal and kinetic energy during pulsed laser
ablation of metals. Appl. Surf. Sci. 96–8, 61–5
Feng Y C, Laughlin D E, Lambeth D N 1994 Interdiffusion
and grain isolation in Co/Cr thin films. IEEE Trans. Magn.
30 (6), 3948–50
Gouteff P C, Folks L, Street R 1998 MFM study of NdFeB and
NdFeB/Fe/NdFeB thin films. J. Mag. Mag. Mater. 177 (2),
1241–2
Keavney D J, Fullerton E E, Pearson J E, Bader S D 1997
High-coercivity, c-axis oriented Nd
2
Fe
14
B films grown by
molecular-beam epitaxy. J. Appl. Phys. 81 (8), 4441–3
Kruusing A 1999 Nd–Fe–B films and microstructures. Int. Ma-
ter. Rev. 44 (4), 121–40
Kubota H, Ikari T, Ando Y, Kato H, Miyazaki T 2000 Effect
of particle size on the magnetization process in lightographic
arrays of Nd
2
Fe
14
B. J. Appl. Phys. 87 (9), 6325–7
Lemke H, Thomas G, Medlin D L 1997 Magnetic properties of
Nd–Fe–B films analyzed by Lorentz microscopy. Nanostruct.
Mater. 9 (1–8), 371–4
Levy M, Osgood R M Jr, Hedge H, Cadieu F J, Wolfe R,
Fratello V J 1996 Integrated optical isolators with sputter-
deposited thin-film magnets. IEEE Photon. Tech. Lett. 8 (7),
903–5
Linetsky Y L, Raigorodsky V M, Tsvetkov V Y 1992 Phase-
transformations in sputtered Nd–Fe–B alloys. J. Alloys Com-
pounds 184 (1), 35–42
Mapps D J, Chandrasekhar R, O’Grady K, Cambridge J, Petford
L A, Doole R 1997 Magnetic properties of NdFeB thin-films
on platinum underlayers. IEEE Trans. Magn. 33 (5), 3007–9
Panagiotopoulos I, Mengburany X, Hadjipanayis G C 1997
Granular Nd
2
Fe
14
B/W thin films. J. Magn. Magn. Mater.
172 (3), 225–8
Parhofer S M 1997 Hartmagnetische Nd–Fe–B–Du
¨
nnfilme
(Hard magnetic Nd–Fe–B thin films). Ph. D. thesis, Techni-
cal University of Dresden, Verlag Mainz, Aachen, Germany
Parhofer S, Gieres G, Wecker J, Schultz L 1996 Growth char-
acteristics and magnetic properties of sputtered Nd–Fe–B
thin-films. J. Magn. Magn. Mater. 163 (1–2), 32–8
Parhofer S, Kuhrt C, Wecker J, Gieres G, Schultz L 1998
Magnetic properties and growth texture of high-coercive
Nd–Fe–B thin films. J. Appl. Phys. 83 (5), 2735–41
Parhofer S M, Wecker J, Kuhrt C, Gieres G, Schultz L 1996
Remanence enhancement due to exchange coupling in mul-
tilayers of hardmagnetic and softmagnetic phases. IEEE
Trans. Magn. 32 (5), 4437–9
Piramanayagam S N, Matsumoto M, Morisako A, Takei S
1997 Synthesis of Nd–Fe–B thinfilms with high coercive force
by cosputtering. IEEE Trans. Magn. 33 (5), 3643–5
Piramanayagam S N, Matsumoto M, Morisako A, Takei S
1998 Studies on NdFeB thin films over a wide composition
range. J. Alloys Compounds 281 (1), 27–31
Shima T, Kamegawa A, Aoyagi E, Hayasaka Y, Fujimori H
1998 Magnetic properties and structure of Nd–Fe–B thin
films with Cr and Ti underlayers. J. Magn. Magn. Mater. 177
(2), 911–2
Shindo M, Ishizone M, Sakuma A, Kato H, Miyazaki T 1997
Magnetic properties of exchange-coupled a-Fe/Nd–Fe–B
multilayer thin-film magnets. J. Appl. Phys. 81 (8), 4444–6
Tsai J L, Chin T S, Chen S K 1999a Coercivity mechanism and
microstructure study of sputtered Nd–Fe–B/X/Si(111)
(X ¼W, Pt) films. Jpn. J. Appl. Phys. 38 (1, 10), 5879–84
Tsai J L, Chin T S, Chen S K, Shih J C 1999c Magnetic prop-
erties and growth behaviour of Nd–Fe–B films on Si(111).
Jpn. J. Appl. Phys. 38, 4051–5
Tsai J L, Chin T S, Huang E Y, Chen S K 1998 Magnetization
reversal of Nd(Dy)–Fe–B thin films on Si(111) or Ta/Si(111).
J. Appl. Phys. 83 (11), 6241–3
Tsai J L, Chin T S, Shih J C, Chen S K 1999b Magnetic prop-
erties of nanocomposite Nd
2
Fe
14
B–Fe films. IEEE Trans.
Magn. 35 (5), 3337–9
Wittig J E, Nolan T P, Ross C A, Schabes M E, Tang K,
Sinclair R, Bentley J 1998 Chromium segregation in CoCrTa/
Cr and CoCrPt/Cr thin films for longitudinal recording me-
dia. IEEE Trans. Magn. 34, 1564–6
Yamashita S, Yamasaki J, Ikeda M, Iwabuchi N 1991 Aniso-
tropic Nd–Fe–B thin-film magnets for milli-size motor.
J. Appl. Phys. 70, 6627–9
Yu M, Liu Y, Liou S H, Sellmyer D J 1998 Nanostructured
NdFeB films processed by rapid thermal annealing. J. Appl.
Phys. 83 (11, 2), 6611–3
S. Fa
¨
hler and L. Schultz
IFW Dresden, Germany
Magnetic Force Microscopy
Magnetic force microscopy (MFM) (Martin and
Wickramasinghe 1987, Gru
¨
tter et al. 1992) is a
slow-scan, raster-type imaging technique that maps
a signal issued from the interaction of a tiny magnetic
probe, or tip, with the magnetization distribution
within the observed sample. The technique has been
demonstrated to yield a resolution below some 20 nm
in favorable cases with minimal or even no sample
preparation. A magnetic force microscope may be
435
Magnetic For ce Microscopy