
an array of overdamped junctions with a signal com-
posed of a conventional sinusoidal drive and a two-
level broadband digital code. This allows a controlled
sequence of negative and positive pulses to be gen-
erated. Reference voltages between NV
1
and þNV
1
are obtained by time averaging of periodic sequences
of pulses with an appropriate number and polarity
(Benz et al. 1999). A synthesis of a sine wave with an
amplitude of 718 mV at 5 kHz has been verified. All
pulse-driven D/A converters need a perfect broad-
band transmission line without dispersion for fast
signal propagation. In practice this is very difficult to
achieve for large arrays with an output voltage am-
plitude of 1 V or more.
In principle, the use of rapid single-flux quantum
(RSFQ) voltage multipliers would overcome the dif-
ficulties with the broadband transmission lines of the
pulse-driven systems (Semenov 1993, Semenov et al.
1997, Sasaki et al. 1999). These complex digital cir-
cuits amplify the voltage with integer gain by mul-
tiplication of SFQ pulses. An RSFQ D/A converter
contains a certain number of voltage multipliers in
series connection that are independently controlled
by the generation of a train of pulses with a repetition
rate proportional to the input code. With a 2500-
junction circuit an output voltage of 5 mV has been
verified. Higher voltages can basically be achieved by
hybrid integration of such circuits.
See also: Electrodynamics of Superconductors: Flux
Properties; Electrodynamics of Superconductors:
Weakly Coupled; Metrology: Superconducting
Cryogenic Current Comparators
Bibliography
Bardeen J, Cooper C N, Schrieffer J R 1947 Theory of super-
conductivity. Phys. Rev. 108, 1175–204
Behr R, Grimm L, Funck T, Kohlmann J, Schulze H, Mu
¨
ller F,
Schumacher B, Warnecke P, Niemeyer J 2001 Application of
Josephson series arrays to a DC quantum voltmeter. IEEE
Instrum. Meas. 50, 185–7
Behr R, Schulze H, Mu
¨
ller F, Kohlmann J, Niemeyer J 1999
Josephson arrays at 70 GHz for conventional and program-
mable voltage standards. IEEE Trans. Instrum. Meas. 48,
270–3
Benz S P, Hamilton C A 1996 A pulse-driven programmable
Josephson voltage standard. Appl. Phys. Lett. 68, 3171–3
Benz S P, Hamilton C A, Burroughs C J, Harvey T E 1997
Stable 1 volt programmable voltage standard. Appl. Phys.
Lett. 71, 1866–8
Benz S P, Hamilton C A, Burroughs C J, Harvey T E 1999 AC
and DC bipolar voltage source using quantized pulses. IEEE
Trans. Instrum. Meas. 48, 266–9
Benz S P, Hamilton C A, Burroughs C J, Harvey T E, Christian
L A, Przybysz J E 1998 Pulse-driven Josephson digital/an-
alog converter. IEEE Trans. Appl. Supercond. 8, 42–7
Funck T, Behr R, Klonz M 2000 Fast reversed DC measure-
ments on thermal converters using a SINIS Josephson junc-
tion array. IEEE Instrum. Meas. in press
Gurvitch M, Washington M A, Huggins H A, Rowell T M 1983
High quality refractory Josephson tunnel junctions utilizing
thin aluminum layers. IEEE Trans. Magn. 19, 791–4
Hamilton C A, Burroughs C J, Kautz R L 1995 Josephson D/A
converter with fundamental accuracy. IEEE Trans. Instrum.
Meas. 44, 233–4
Hamilton C A, Lloyd F L, Chie K, Goeke W C 1989 A 10-V
Josephson voltage standard. IEEE Trans. Instrum. Meas.
IM-38, 314–6
Josephson B D 1962 Possible new effects in superconductive
tunneling. Phys. Lett. 1, 251–3
Kautz R L 1981 The a.c. Josephson effect in hysteretic junc-
tions: range and stability of phase lock. J. Appl. Phys. 52,
3528–41
Kautz R L 1996 Noise, chaos and the Josephson voltage stand-
ard. Rep. Prog. Phys. 59, 935–92
Kohlmann J, Schulze H, Behr R, Mu
¨
ller F, Niemeyer J 2000
10 V SINIS Josephson junction series arrays for program-
mable voltage standards. IEEE Instrum. Meas. in press
Kose V 1974 Maintaining the unit of voltage at PTB via the
Josephson effect. IEEE Trans. Instrum. Meas. IM-23, 271–5
Kupriyanov MYu, Brinkman A, Golubov A A, Siegel M,
Rogalla H 1999 Double barrier Josephson structures as the
novel elements for superconducting large scale integrated
circuits. Physica C 326–327, 16–45
Levinsen M T, Chiao R Y, Feldman M J, Tucker B A 1977 An
inverse a.c. Josephson effect voltage standard. Appl. Phys.
Lett. 31, 776–8
Maezawa M, Shoji A 1997 Overdamped Josephson junctions
with Nb/Al/Al
x
O
y
/Al/Al
x
O
y
/Nb structure for integrated cir-
cuit application. Appl. Phys. Lett. 70, 3603–5
McCumber D E 1969 Effect of AC impedance on DC voltage
current characteristics of superconductor weak link junc-
tions. J. Appl. Phys. 39, 3113–8
Mu
¨
ller F, Po
¨
pel R, Kohlmann J, Niemeyer J, Meier W, Wei-
mann T, Grimm L, Du
¨
nschede F, Gutmann P 1997 Optimi-
zed 1 V and 10 V Josephson series arrays. IEEE Trans.
Instrum. Meas. 46, 229–32
Niemeyer J, Grimm L, Meier W, Hinken J H, Vollmer E 1985 A
stable Josephson reference voltage between 0.1 and 1.3 V for
high-precision voltage standards. Appl. Phys. Lett. 47, 1222–3
Niemeyer J, Hinken J H, Kautz R L 1984 Microwave-induced
constant-voltage steps at one volt from a series array of
Josephson junctions. Appl. Phys. Lett. 45, 478–80
Niemeyer J, Sakamoto Y, Vollmer E, Hinken J H, Shoji A,
Nakagawa H, Takada S, Kosaka S 1989 Nb/Al-oxide/Nb
and NbN/MgO/NbN tunnel junctions in large series arrays
for voltage standards. Jpn. J. Appl. Phys. 25, L343–5
Sasaki H, Kiryu S, Hirayama F, Kikuchi T, Maezawa M, Shoji
A 1999 RSFQ-based D/A converter for AC voltage standard.
IEEE Trans. Appl. Supercond. 9 (2), 3561–4
Schulze H, Behr R, Kohlmann J, Mu
¨
ller F, Niemeyer J 2000
Design and fabrication of 10 V SINIS Josephson arrays for
programmable voltage standards. Supercond. Sci. Technol. 9,
1293–5
Schulze H, Behr R, Mu
¨
ller F, Niemeyer J 1998 Nb/Al/Al
x
O
y
/
Al/Al
x
O
y
/Nb Josephson junctions for programmable voltage
standards. Appl. Phys. Lett. 73, 996–8
Schulze H, Mu
¨
ller F, Behr R, Kohlmann J, Niemeyer J,
Balashov D 1999 SINIS Josephson junctions for program-
mable Josephson voltage standard circuits. IEEE Trans.
Appl. Supercond. 9, 4241–4
Semenov V K 1993 Digital to analog conversion based on
processing of the SFQ pulses. IEEE Trans. Appl. Supercond.
3, 2637–40
367
Josephson Vol tage Standard