
12.3 CP-Violation in the K
0
K
0
System 353
To understand how a mismatch of the waves may change the flavor eigenstate,
let us use an analogy. In optics, a distinction between “base colors” (for
instance red, blue and green) and “compound colors” can be made. For
example, purple is a mixture of red and blue. Now, imagine a given source of
a “purple wave.” Purple (corresponding in the analogy to a flavor eigenstate)
is obtained by mixing the red and blue basic colors (that correspond to
mass eigenstates). The emitted wave has a percentage of red and blue waves
with initial values in order to provide, in the mixture, the right shade of
purple. The propagation can affect the basic red and blue colors differently.
If they propagate with the same velocity, their overlap gives the same purple
color everywhere. If they propagate with different velocities, their intensity is
different from point to point. This corresponds to different resulting colors
seen by observers in different positions. The word “oscillation” does not
refer to the fact that particles are represented by waves, but rather that the
observable color (D flavor eigenstate) changes with the distance from the
source, with an oscillatory law. At certain points, the wave may even appear
to an observer as purely red (or blue).
12.3 CP-Violation in the K
0
K
0
System
In 1964, Cronin, Fitch (Nobel laureate in 1980) and colleagues experimentally
observed that a small K
0
2
fraction decays in 2. This is inconsistent with the
fact that K
0
2
is a CP eigenstate, as it should always decay into three pions. In
their experiment, a pure K
0
beam of 1 GeV/c momentum was injected into a
15 m length vacuum tube. All K
0
1
decayed before reaching the end of the pipe
since l
K
0
1
D ˇc
K
0
S
' 6 cm. At the end of the tube, only K
0
2
decays in 3
were expected. A few K
0
2
decays in
C
and
0
0
were also observed. This
result represented the first experimental evidence of CP-violation. Following this
observation, a slight modification is needed in the discussion presented above. The
particles with longer and shorter lifetimes were denoted as K
0
L
and K
0
S
respectively,
with
S
D .89:53 ˙0:05/ 10
12
sI
L
D .51:14 ˙0:21/ 10
9
s(L and S stand
for long and short). They are now considered as the mass eigenstates, leaving the
names K
0
2
, K
0
1
for the CP eigenstates [12B95]. In addition to the K
0
L
! 2 decay,
a charge asymmetry in the semileptonic decays of K
0
L
was also found, see (12.26).
The K
0
K
0
propagation represents a very precise interferometer, which can
highlight the small CP-violation in the K
0
L
system. Due to the relevant historical
point of view, the K
0
K
0
system is used in the following to describe the time
evolution formalism needed to extract the small quantities producing CP-violation.
The formalism can easily be generalized for other mesons made of heavier quarks,
as the more recently experimentally studied D; B; B
S
mesons.