262 References
738. D. Tall, Comments on the dif ficulty of and validity of various ap-
proaches to the calculus. For the Learning of Mathematics 2 no. 2
(1981), 16–21.
739. D. Tall, Elementary axioms and pictures for infinitesimal calculus,
Bull. Inst. Math. Appl. 18, nos. 3–4 (1982), 43–48.
740. D. Tal l, Understa nding the processes of advanced mathematical
thinking, Enseign. Math. (2 ) 42, nos. 3–4 (1996), 395–415.
741. D. Tall, Cognitive development i n advanced mathematics usi ng tech-
nology. Math. Ed. Res. J. 12 no. 3 ( 2000), 210–230.
742. D. Tall, Natural and formal infinities, Ed. Stud . Math. 48, no. 2 & 3
(2001), 199–238.
743. D. Tall, A child thinking about infinity, J. Math. Behavior 20, no. 1
(2001), 7–19. DOI: 10.1016/S0732-3123(01)00058-X.
744. D. Tall, A theory of mathematical growth through embodiment, sym-
bolism and proof. Annales de Didactique et de Sciences Cognitives,
IREM de Strasbourg. 11 (2006), 195–215.
745. D. Tall, How Humans Learn to Think Mathematically. Prince-
ton University Press, 2 010.
746. D. Tall, E. Gray, M. Bin Al i, L. Crowley, P. DeMarois, M. McGowen,
D. Pitta, M. Pi nto, M. Thomas, and Yudariah Yusof, Symbols and the
bifurcation between procedural and conceptual thinking, Canadian
J. Science, Mathematics a nd Technology Education 1 (2001) , 81–104.
747. D. O. Tall, M. O. J. Thomas, G. Davis, E. M. Gray, and A. P. Simp-
son, What i s the object of the encapsulation of a process? J. Math.
Behavior 18, no. 2 (2000), 1 –19.
748. D. Tall and R. L. E . Schwarzenberger, Conflicts in the learning of real
numbers and limits, Ma th. Teaching 82 (1978), 4 4–49.
749. D. Tall and S. Vinner, Concept image and concept definition with par-
ticular references to limits and continui ty, Ed. Stud. Math. 12 (1981),
151–169.
750. I. Thompson (ed.), Teac hing and Lear ning Early Number.
Open University Press, 1997. ISBN-10: 0 33519 8511. ISBN-13: 978-
0335198511.
751. W. P. Thurston, Mathematical education. Notices Amer. Ma th. Soc.
37 (1990), 844–850.
752. P. Tsamir and D. Tirosh, Consistency and representations: The case
of actual infin ity. J. Res. Math. Ed. 30 (1999), 213–219 .
753. B. Van de Rijt, R. Godfrey, C. Aubrey, J. E. H. v. Luit, P. Ghesquiere,
J. Torbeyns, et al. The development of early numeracy in Europe. J.
Early Childh ood Research 1 no. 2 (2003), 155–180.
754. J. Vincent and B. M cCrae, Mechanical linkages, d ynamic geometry
software and mathematical proof. Australian Senior Mathematics
Journal 15 no. 1 (2001), 56–63.
755. J. Vlassis, Making sense of the minus sign or becoming flexible in
‘negativity’, Learning and Instru ction 14 (2004), 469–484.
756. K. Weller, A. Brown, E. Dubi nsky, M. McDonald, and C. Stenger, In-
timations of infini ty. Notices Amer. M ath. Soc. 51, no. 7 (2004), 741–
750.
757. H.-H. Wu, The role of open-ended problems in mathematics educa-
tion, J. Math. Behavior 13 (1994), 115–12 8.
SHADOWS OF THE TRUTH VER. 0.813 23-DEC-2010/7:19
c
ALEXANDRE V. BOROVIK