274 8 Turbulence
Clearly, Eq.(8.8.30) has a fixed point solution, U
n
∝2
nD
2
+
n
3
independent of the
value of p. This fixed point corresponds to the Kolmogorov spectrum since the
total energy contained in a shell of scale n is
k
0
2
−(n+1)
k
0
2
−n
E(k)dk =
1
2
n
[U
n
]
2
∼2
(N−n)D
2
nD+
2n
3
(8.8.32)
If E(k) ∼k
−α
, then α =5/3.
We can absorb the factor 2
−3D/2
by a redefinition of the U as U 2
nD/2
and the
resulting equation is precisely that used as a starting point by Carbone (a superficial
difference in the position of the factor 2 in the coefficient of U
n+1
U
n+1
occurs
because our k
n
=k
0
/2
n
as opposed to k
n
=k
0
2
n
used by others) when the linear
energy dissipating term and the forcing term are introduced. Since the Kolmogorov
spectrum is obtained for all p, we can choose p =0 and write for n ≤N
˙
U
n
= k
n
(U
n−1
U
n−1
−
1
2
U
n
U
n+1
) −k
n
(U
n
U
n−1
−
1
2
U
n+1
U
n+1
)
=−νk
2
n
U
n
+δ
n,N
(8.8.33)
Where −νk
2
n
U
n
represents the viscous loss and δ
n,N
is the term which signifies
that in the N
th
shell (large length scale) there is an extra forcing coming from
outside.
References
1. A.N. Kolmogorov, C R (Dokl) Acad. Sci. USSR, 30, 301, (1941)
2. H.L. Grant, R.W. Stewart and A. Moillet, J. Fluid. Mech., 12, 241, 1962; 13, 237,
(1962)
3. A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, Vol.2, MIT Press, (1971)
4. H. Tennekes and I. Lumley, A First Course in Turbulence,MIT Press Cambridge, (1972)
5. D.C. Leslie, Developments in the Theory of Turbulence, Clarendon Press, Oxford,
(1972)
6. S.A. Orszag, Les Houches Lectures on Fluid Dynamics, Gordon and Breach, London,
(1973)
7. D. Forster, D. Nelson and M. Stephen, Phys. Rev. A16, 732, (1976)
8. P.C. Martin and C. De Dominicis, Prog. Theor. Phys. (Suppl.) 64, 108, (1978)
9. C. De Dominicis and P.C.Martin, Phys. Rev. A19, 419, (1979)
10. C. Meneveau and K.R. Sreenivasan Phys. Rev. Lett., 59, 1424, 1987; Nucl. Phys. (Proc.
Suppl.), B2, 49, (1987)
11. M. Lesieur, Turbulence, M Ninjhuis, Amsterdam, (1988)
12. kn:comb W.D. McComb, The Physics of Fluid Turbulence, Clarendon Press, Oxford,
(1990)
13. L. Sirovich ed., New Perspectives in Turbulence, Springer-Verlag, Berlin, (1990)
14. E. Ott, Chaos in Dynamical Systems, Cambridge University Press, (1993)
15. U.Frisch, Turbulence, Cambridge University Press, (1996)