ɡɨɤ. ɇɨɪɦɵ ɋɇɢɉ ɞɨɥɠɧɵ ɩɪɢɦɟɧɹɬɶɫɹ ɜ ɨɫɧɨɜɧɨɦ ɩɪɢ ɪɟɲɟɧɢɢ ɩɪɨ-
ɟɤɬɧɵɯ, ɚ ɧɟ ɷɤɫɩɥɭɚɬɚɰɢɨɧɧɵɯ ɡɚɞɚɱ.
ȼ ɩɪɢɥɨɠɟɧɢɢ 3 ɩɪɢɜɟɞɟɧɵ ɞɚɧɧɵɟ ɨ ɞɥɢɬɟɥɶɧɨɫɬɢ ɫɬɨɹɧɢɹ ɪɚɡ-
ɥɢɱɧɵɯ ɬɟɦɩɟɪɚɬɭɪ ɧɚɪɭɠɧɨɝɨ ɜɨɡɞɭɯɚ ɡɚ ɨɬɨɩɢɬɟɥɶɧɵɣ ɩɟɪɢɨɞ ɜ ɧɟɤɨ-
ɬɨɪɵɯ ɝɨɪɨɞɚɯ ɛɵɜɲɟɝɨ ɋɋɋɊ, ɢɦɢ ɦɨɠɧɨ ɩɨɥɶɡɨɜɚɬɶɫɹ ɞɥɹ ɨɪɢɟɧɬɢɪɨ-
ɜɨɱɧɵɯ ɪɚɫɱɟɬɨɜ ɩɪɢ ɨɬɫɭɬɫɬɜɢɢ ɛɨɥɟɟ ɬɨɱɧɵɯ ɫɜɟɞɟɧɢɣ. ɇɚɱɚɥɨ ɢ ɤɨ
-
ɧɟɰ ɨɬɨɩɢɬɟɥɶɧɨɝɨ ɫɟɡɨɧɚ ɞɥɹ ɩɪɨɦɵɲɥɟɧɧɵɯ ɡɞɚɧɢɣ ɨɩɪɟɞɟɥɹɸɬɫɹ ɧɚ-
ɪɭɠɧɨɣ ɬɟɦɩɟɪɚɬɭɪɨɣ, ɩɪɢ ɤɨɬɨɪɨɣ ɬɟɩɥɨɩɨɬɟɪɢ ɱɟɪɟɡ ɧɚɪɭɠɧɵɟ ɨɝɪɚ-
ɠɞɟɧɢɹ ɞɟɥɚɸɬɫɹ ɪɚɜɧɵɦɢ ɜɧɭɬɪɟɧɧɢɦ ɬɟɩɥɨɜɵɞɟɥɟɧɢɹɦ. Ɍɚɤ ɤɚɤ ɬɟɩ-
ɥɨɜɵɞɟɥɟɧɢɹ ɜ ɩɪɨɦɵɲɥɟɧɧɵɯ ɡɞɚɧɢɹɯ ɡɧɚɱɢɬɟɥɶɧɵ, ɬɨ ɜ ɛɨɥɶɲɢɧɫɬɜɟ
ɫɥɭɱɚɟɜ ɞɥɢɬɟɥɶɧɨɫɬɶ ɨɬɨɩɢɬɟɥɶɧɨɝɨ ɫɟɡɨɧɚ ɞɥɹ ɩɪɨɦɵɲɥɟɧɧɵɯ ɡɞɚɧɢɣ
ɤɨɪɨɱɟ, ɱɟɦ ɞɥɹ ɠɢɥɵɯ ɢ ɨɛɳɟɫɬɜɟɧɧɵɯ ɡɞɚɧɢɣ.
2.1.2. ȼɟɧɬɢɥɹɰɢɹ
Ɋɚɫɯɨɞ ɬɟɩɥɨɬɵ ɧɚ ɜɟɧɬɢɥɹɰɢɸ ɩɪɟɞɩɪɢɹɬɢɣ, ɚ ɬɚɤɠɟ ɨɛɳɟɫɬɜɟɧ-
ɧɵɯ ɡɞɚɧɢɣ ɢ ɤɭɥɶɬɭɪɧɵɯ ɭɱɪɟɠɞɟɧɢɣ ɫɨɫɬɚɜɥɹɟɬ ɡɧɚɱɢɬɟɥɶɧɭɸ ɞɨɥɸ
ɫɭɦɦɚɪɧɨɝɨ ɬɟɩɥɨɩɨɬɪɟɛɥɟɧɢɹ ɨɛɴɟɤɬɚ. ȼ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɩɪɟɞɩɪɢ-
ɹɬɢɹɯ ɪɚɫɯɨɞ ɬɟɩɥɨɬɵ ɧɚ ɜɟɧɬɢɥɹɰɢɸ ɱɚɫɬɨ ɩɪɟɜɵɲɚɟɬ ɪɚɫɯɨɞ ɧɚ ɨɬɨ-
ɩɥɟɧɢɟ.
Ɋɚɫɯɨɞ ɬɟɩɥɨɬɵ ɧɚ ɜɟɧɬɢɥɹɰɢɸ ɩɪɢɧɢɦɚɸɬ ɩɨ ɩɪɨɟɤɬɚɦ ɦɟɫɬɧɵɯ ɫɢɫɬɟɦ
ɜɟɧɬɢɥɹɰɢɢ ɢɥɢ ɩɨ ɬɢɩɨɜɵɦ ɩɪɨɟɤɬɚɦ ɡɞɚɧɢɣ, ɚ ɞɥɹ ɞɟɣɫɬɜɭɸɳɢɯ
ɭɫɬɚ-
ɧɨɜɨɤ – ɩɨ ɷɤɫɩɥɭɚɬɚɰɢɨɧɧɵɦ ɞɚɧɧɵɦ.
Ɉɪɢɟɧɬɢɪɨɜɨɱɧɵɣ ɪɚɫɱɟɬ ɪɚɫɯɨɞɚ ɬɟɩɥɨɬɵ ɧɚ ɜɟɧɬɢɥɹɰɢɸ, Ⱦɠ/ɫ
ɢɥɢ ɤɤɚɥ/ɱ, ɦɨɠɧɨ ɩɪɨɜɨɞɢɬɶ ɩɨ ɮɨɪɦɭɥɟ
Q
ɜ
= mV
ɜ
ɫ
ɜ
(t
ɜ.ɩ
– t
ɧ
), (2.8)
ɝɞɟ q
ɜ
– ɪɚɫɯɨɞ ɬɟɩɥɨɬɵ ɧɚ ɜɟɧɬɢɥɹɰɢɸ; m – ɤɪɚɬɧɨɫɬɶ ɨɛɦɟɧɚ ɜɨɡɞɭɯɚ,
1/ɫ ɢɥɢ l/ɱ; V
ɜ
– ɜɟɧɬɢɥɢɪɭɟɦɵɣ ɨɛɴɟɦ ɡɞɚɧɢɹ, ɦ
Ɂ
; c
ɜ
– ɨɛɴɟɦɧɚɹ ɬɟɩɥɨ-
ɟɦɤɨɫɬɶ ɜɨɡɞɭɯɚ, ɪɚɜɧɚɹ 1,26 ɤȾɠ/(ɦ
Ɂ
/Ʉ) = 0,3 ɤɤɚɥ/(ɦ
Ɂ
/ °ɋ); t
ɜ.ɩ
– ɬɟɦ-
ɩɟɪɚɬɭɪɚ ɧɚɝɪɟɬɨɝɨ ɜɨɡɞɭɯɚ, ɩɨɞɚɜɚɟɦɨɝɨ ɜ ɩɨɦɟɳɟɧɢɟ, °ɋ; t
ɧ
– ɬɟɦ-
ɩɟɪɚɬɭɪɚ ɧɚɪɭɠɧɨɝɨ ɜɨɡɞɭɯɚ, °ɋ.
Ⱦɥɹ ɭɞɨɛɫɬɜɚ ɪɚɫɱɟɬɚ (2.8) ɩɪɢɜɨɞɹɬ ɤ ɜɢɞɭ
Q
ɜ
= q
ɜ
V (t
ɜ
– t
ɧ
), (2.9)
ɝɞɟ q
ɜ
– ɭɞɟɥɶɧɵɣ ɪɚɫɯɨɞ ɬɟɩɥɨɬɵ ɧɚ ɜɟɧɬɢɥɹɰɢɸ, ɬ. ɟ. ɪɚɫɯɨɞ ɬɟɩɥɨɬɵ
ɧɚ 1 ɦ
Ɂ
ɜɟɧɬɢɥɢɪɭɟɦɨɝɨ ɡɞɚɧɢɹ ɩɨ ɧɚɪɭɠɧɨɦɭ ɨɛɦɟɪɭ ɢ ɧɚ 1 °ɋ ɪɚɡɧɨɫɬɢ
ɦɟɠɞɭ ɭɫɪɟɞɧɟɧɧɨɣ ɪɚɫɱɟɬɧɨɣ ɬɟɦɩɟɪɚɬɭɪɨɣ ɜɨɡɞɭɯɚ ɜɧɭɬɪɢ ɜɟɧ-
ɬɢɥɢɪɭɟɦɨɝɨ ɩɨɦɟɳɟɧɢɹ ɢ ɬɟɦɩɟɪɚɬɭɪɨɣ ɧɚɪɭɠɧɨɝɨ ɜɨɡɞɭɯɚ; V – ɧɚ-