494 D. Hildenbrand et al.
8Conclusion
Geometric algebra is applicable in many different engineering scenarios and pro-
vides a straightforward and intuitive problem solving approach. With the help of our
Gaalop tool, these algorithms can be automatically transformed into high runtime
performance implementations. With these results, we are convinced that conformal
geometric algebra will be able to become more and more fruitful in a great variety
of engineering applications.
References
1. Abłamowicz, R., Fauser, B.: Clifford/bigebra, a Maple package for Clifford (co)algebra com-
putations (2009). ©1996–2009, RA&BF
2. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science, An Object-
Oriented Approach to Geometry. Morgan Kaufman, San Mateo (2007)
3. Fontijne, D.: Efficient implementation of geometric algebra. Ph.D. thesis, University of Ams-
terdam (2007)
4. Franchini, S., Gentile, A., Grimaudo, M., Hung, C.A., Impastato, S., Sorbello, F., Vassallo, G.,
Vitabile, S.: A sliced coprocessor for native Clifford algebra operations. In: Euromico Confer-
ence on Digital System Design, Architectures, Methods and Tools (DSD) (2007)
5. Gentile, A., Segreto, S., Sorbello, F., Vassallo, G., Vitabile, S., Vullo, V.: Cliffosor, an innova-
tive FPGA-based architecture for geometric algebra. In: ERSA 2005, pp. 211–217 (2005)
6. Hildenbrand, D.: Geometric computing in computer graphics using conformal geometric al-
gebra. Comput. Graph. 29(5), 802–810 (2005)
7. Hildenbrand, D., Pitt, J.: The Gaalop homepage. Available at http://www.gaalop.de (2010)
8. Hildenbrand, D., Fontijne, D., Perwass, C., Dorst, L.: Tutorial geometric algebra and its ap-
plication to computer graphics. In: Eurographics Conference Grenoble (2004)
9. Hildenbrand, D., Fontijne, D., Wang, Y., Alexa, M., Dorst, L.: Competitive runtime perfor-
mance for inverse kinematics algorithms using Conformal geometric algebra. In: Eurographics
Conference Vienna (2006)
10. Hildenbrand, D., Lange, H., Stock, F., Koch, A.: Efficient inverse kinematics algorithm
based on conformal geometric algebra using reconfigurable hardware. In: GRAPP Confer-
ence Madeira (2008)
11. Kasprzyk, N., Koch, A.: High-level-language compilation for reconfigurable computers. In:
Proceedings International Conference on Reconfigurable Communication-centric SoCs (Re-
CoSoC) (2005)
12. Mishra, B., Wilson, P.R.: Color edge detection hardware based on geometric algebra. In: Eu-
ropean Conference on Visual Media Production (CVMP) (2006)
13. Mishra, B. Wilson, P.R.: VLSI implementation of a geometric algebra parallel processing core.
Technical report, Electronic Systems Design Group, University of Southampton, UK (2006)
14. NVIDIA. The CUDA homepage. Available at http://www.nvidia.com/object/cuda_home.html
(2009)
15. Perwass, C.: The CLU homepage. Available at http://www.clucalc.info (2010)
16. Perwass, C., Gebken, C., Sommer, G.: Implementation of a Clifford algebra co-processor de-
sign on a field programmable gate array. In: Ablamowicz, R. (ed.) CLIFFORD ALGEBRAS:
Application to Mathematics, Physics, and Engineering. Progress in Mathematical Physics,
pp. 561–575. Birkhäuser, Basel (2003). 6th Int. Conf. on Clifford Algebras and Applications,
Cookeville, TN
17. The RoboCup Federation. Robocup official site. Available at http://www.robocup.org