VIII Contents
4.2 ATotalTheoryConnectionCalculus...................... 80
4.2.1 Theory Refuting Substitutions . . . . . . . . . . . . . . . . . . . . . 81
4.2.2 Definition of a Total Theory Connection Calculus . . . . 85
4.2.3 Soundness of TTCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Theory Model Elimination — Semantical Version . . . . . . . . . . . 90
4.3.1 Motivation ...................................... 90
4.3.2 Definition of Theory Model Elimination . . . . . . . . . . . . . 92
4.3.3 Relation to TTCC-Link . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4 Total Theory Model Elimination — MSR-Version. . . . . . . . . . . 101
4.4.1 Complete and Most General Sets of T -Refuters . . . . . . 102
4.4.2 Definition ofTTME-MSR ......................... 106
4.4.3 Soundness and Answer Completeness of TTME-MSR . 109
4.4.4 Related Work.................................... 112
4.4.5 A Sample Application: Terminological Reasoning . . . . . 113
4.5 Partial Theory Model Elimination - Inference Systems Version 115
4.5.1 Theory InferenceSystems ......................... 118
4.5.2 Definition of PTME-I ............................ 120
4.5.3 Soundness and Answer Completeness . . . . . . . . . . . . . . . 123
4.5.4 An Application: Generalized Model Elimination . . . . . . 128
4.6 RestartTheoryModel Elimination........................ 129
4.6.1 Definition of Restart Theory Model Elimination . . . . . . 130
4.6.2 Soundness and Answer Completeness . . . . . . . . . . . . . . . 135
4.6.3 Regularity and First-Order Completeness . . . . . . . . . . . . 137
Other Refinements................................ 139
5. Linearizing Completion ................................... 141
5.1 Introduction ........................................... 142
5.1.1 Linearizing Completion and Theory Reasoning . . . . . . . 142
5.1.2 Related Work.................................... 143
5.1.3 Relation to Knuth-Bendix Completion . . . . . . . . . . . . . . 147
5.1.4 InformalDescriptionofthe Method................. 148
5.1.5 Linearizing Completion and Resolution Variants . . . . . . 153
5.1.6 Preliminaries .................................... 157
5.2 Inference Systems ...................................... 157
5.2.1 InitialInference Systems .......................... 160
5.2.2 Completeness of Initial Inference Systems . . . . . . . . . . . 162
5.2.3 Subderivations ................................... 163
5.3 Orderings and Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.3.1 Orderings on Nested Multisets with Weight . . . . . . . . . . 165
5.3.2 DerivationOrderings.............................. 167
5.3.3 Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.4 TransformationSystems................................. 171
5.4.1 Limit Inference Systems........................... 174
5.4.2 FairnessandCompletion .......................... 175
5.5 Complexity-ReducingTransformationSystems ............. 177