51 (a) Cachoux, F., Isarno, T., Wartmann, M.,
and Altmann, K.-H. (2005) Angew. Chem.
Int. Ed., 44, 7469; (b) Cachoux, F., Isarno,
T., Wartmann, M., and Altmann, K.-H.
(2006) ChemBioChem, 7, 54.
52 For a review, see: Feyen, F., Cachoux, F.,
Gertsch, J., Wartmann, M., and Altmann,
K.-H. (2008) Acc. Chem. Res., 41, 21.
53 Kanada, R.M., Itoh, D., Nagai, M., Niijima,
J., Asai, N., Mizui, Y., Abe, S., and Kotake,
Y. (2007) Angew. Chem. Int. Ed., 46, 4350.
54 Wiseman, J.M., McDonald, F.E., and
Liotta, D.C. (2005) Org. Lett., 7, 3155.
55 (a) Marshall, J.A. and Mikowski, A.M.
(2006) Org. Lett., 8, 4375; (b) Marshall, J.A.
and Hann, R.K. (2008) J. Org. Chem., 73,
6753.
56 Taber, D.F. and He, Y. (2005) J. Org. Chem.,
70, 7711.
57 Morimoto, Y., Iwai, T., and Kinoshita, T.
(2001) Tetrahedron Lett., 42, 6307.
58 Morimoto, Y., Nishikawa, Y., and Takaishi,
M. (2005) J. Am. Chem. Soc., 127, 5806.
59 (a) Morimoto, Y., Takaishi, M., Adachi, N.,
Okita, T., and Yata, H. (2006) Org. Biomol.
Chem., 4, 3220; (b) Morimoto, Y., Okita, T.,
Takaishi, M., and Tanaka, T. (2007) Angew.
Chem. Int. Ed., 46, 1132.
60 Morimoto, Y., Yata, H., and Nishikawa, Y.
(2007) Angew. Chem. Int. Ed., 46, 6481.
61 Morimoto, Y., Okita, T., and Kambara, H.
(2009) Angew. Chem. Int. Ed., 48, 2538.
62 Morimoto, Y., Takaishi, M., Iwai, T.,
Kinoshita, T., and Jacobs, H. (2002)
Tetrahedron Lett., 43, 5849.
63 For a review, see: Morimoto, Y. (2008) Org.
Biomol. Chem., 6, 1709.
64 Bian, J., Van Wingerden, M., and Ready,
J.M. (2006) J. Am. Chem. Soc., 128, 7428.
65 Hioki, H., Kanehara, C., Ohnishi, Y.,
Umemori, Y., Sakai, H., Yoshio, S.,
Matsushita, M., and Kodama, M. (2000)
Angew. Chem. Int. Ed., 39, 2552.
66 Das, S., Li, L.-S., Abraham, S., Chen, Z.,
and Sinha, S.C. (2005) J. Org. Chem., 70,
5922.
67 Tong, R., Valentine, J.C., McDonald,
F.E., Cao, R., Fang, X., and Hardcastle,
K.I. (2007) J. Am. Chem. Soc., 129, 1050.
68 Tong, R. and McDonald, F.E. (2008)
Angew. Chem. Int. Ed., 47, 4377.
69 Xiong, Z. and Corey, E.J. (2000) J. Am.
Chem. Soc., 122, 4831.
70 Xiong, Z. and Corey, E.J. (2000) J. Am.
Chem. Soc., 122, 9328.
71 For synthesis and structure revision of
glabrescol, also see: Morimoto, Y., Iwai, T.,
and Kinoshita, T. (2000) J. Am. Chem. Soc.,
122, 7124.
72 Adams, C.M., Ghosh, I., and Kishi, Y.
(2004) Org. Lett., 6, 4723.
73 (a) McDonald, F.E., Wang, X., Do, B.,
and Hardcastle, K.I. (2000) Org. Lett., 2,
2917; (b) McDonald, F.E., Bravo, F.,
Wang, X., Wei, X., Toganoh, M.,
Rodr
ıguez, J.R., Do, B., Neiwert, W.A., and
Hardcastle, K.I. (2002) J. Org. Chem., 67,
2515; (c) Bravo, F., McDonald, F.E.,
Neiwert, W.A., Do, B., and Hardcastle, K.I.
(2003) Org. Lett., 5, 2123; (d) Valentine,
J.C., McDonald, F.E., Neiwert, W.A., and
Hardcastle, K.I. (2005) J. Am. Chem. Soc.,
127, 4586; (e) Tong, R., McDonald, F.E.,
Fang, X., and Hardcastle, K.I. (2007)
Synthesis, 2337.
74 For a review, see: Valentine, J.C. and
McDonald, F.E. (2006) Synlett, 1816.
75 Simpson, G.L., Heffron, T.P., Merino, E.,
and Jamison, T.F. (2006) J. Am. Chem. Soc.,
128, 1056.
76 For SiMe
3
-based strategy for polyether
synthesis, also see: Heffron, T.P. and
Jamison, T.F. (2003) Org. Lett., 5, 2339.
77 Vilotijevic, I. and Jamison, T.F. (2007)
Science, 317, 1189.
78 For additional examples, see: (a) Morten,
C.J. and Jamison, T.F. (2009) J. Am. Chem.
Soc., 131, 6678; (b) Van Dyke, A.R. and
Jamison, T.F. (2009) Angew. Chem. Int. Ed.,
48, 4430.
79 For leading references, see: (a) Lin,
Y.-Y., Risk, M., Ray, S.M., Van Engen,
D., Clardy, J., Golik, J., James, J.C., and
Nakanishi, K. (1981) J. Am. Chem. Soc.,
103, 6773; (b) Shimizu, Y., Chou,
H.-N., Bando, H., Van Duyne, G., and
Clardy, J.C. (1986) J. Am. Chem. Soc.,
108, 514; (c) Pawlak, J., Tempesta, M.S.,
Golik, J., Zagorski, M.G., Lee, M.S.,
Nakanishi, K., Iwashita, T., Gross, M.L.,
and Tomer, K.B. (1987) J. Am. Chem. Soc.,
109, 1144; (d) Nakanishi, K. (1985)
Toxicon, 23, 473.
80 For a leading reference, see: Nicolaou,
K.C. (1996) Angew. Chem. Int. Ed. Engl., 35,
588.
114
j
3 Organocatalytic Oxidation. Ketone-Catalyzed Asymmetric Epoxidation of Alkenes