x
n+1
(i, j) = α − x
2
n
(i, j) + γ[4x
2
n
(i, j) −x
2
n
(i − 1, j) −
− x
2
n
(i + 1, j) − x
2
n
(i, j − 1) − x
2
n
(i, j + 1)],
x
n
(1, j) = x
n
(N + 1, j)
x
n
(i, 1) = x
n
(i, N + 1) i, j = 1, 2, . . . , N N × N
α γ
T = s
T = 2
λ = 2 T = 2
˜α
n+k−1
(i, j) = 2¯x
k
(1 − 4γ)(x
n+k−1
(i, j) − ¯x
k
) + γ((x
2
n+k−1
(i − 1, j) −
− ¯x
2
k
) + (x
2
n+k−1
(i + 1, j) − ¯x
2
k
) + (x
2
n+k−1
(i, j − 1) − ¯x
2
k
) +
+ (x
2
n+k−1
(i, j + 1) − ¯x
2
k
)),
k = 1, 2, . . . , s, ¯x
k
T = s
T = s