210
Kazuhiro
Kurata
[2]
S.
Chanillo and A. E. Sawyer. Unique continuation
for
A
+
v
and the C.Fefferman
-
Phong class, Tran. Amer. Math. SOC.,
318, 1990,
p.
275-300.
[3]
E.
Fabes,
N.
Garofalo and
F.
H.
Lin, A partial answer to a
conjecture
of
B.
Simon concerning unique continuation,
J.
Fun.
Ann.,
88, 1990,
p.
194-210.
[4]
N.
Garofalo and
F.
H. Lin, Monotonicity properties
of
varia-
tional integrals.
A,
weights and unique continuation, Indiana
Univ. Math.
J.,
35, 1986,
p.
245-268.
[5]
N.
Garofalo and
F.
€1.
Lin, Unique continuation
for
elliptic op-
erators: A geornetric-variational approach, Comm.
Pure
Appl.
Math.,
40, 1987,
p.
347-366.
[GI
L. Hormander, Uniqueness theorems
for
second-order elliptic
differential equations, Comm. in PDE,
8, 1983,
p.
21-64.
[7]
D. Jerison and C.
E.
Kenig, Unique continuation and absence
of
positive eigenvalues
of
Schrodinger operators, Annals
of
Math.,
121, 1985,
p.
463-488.
[8]
I<.
Kurata, On unique continuation theorem
for
uniformly el-
liptic equations with strongly singular potentials, Gakushuin
Preprint Series
No.2
,
1991.
[9]
A. Plis,
On
non-uniqueness in Cauchy problems
for
an
ellip-
tic second order diflerential operators, Bull. Acad. Pol. Sci.,
11,
1963,
p.
(55-100.
[lo]
E.
T.
Sawyer, Unique continuation
for
Schrodinger operators
in
dimension three
or
less, Ann. Inst. Fourier (Grenoble),
34,
No.
3, 1984,
p.
189-200.
[Ill
C.
D. Sogge, Strong uniqueness theorems
for
second
order
elliptic
differential equations, Amer.
J.
Math.,
112, 1990,
p.
943-984.
[12]
E.
M. Stein, An appendix to "Unique continuation and absence
of
positive eigenvalues
of
Schrodinger operators", by D. Jerison
and C.
E.
Kenig, Ann. of Math.,
121, 1985,
p.
489-494.