150
G.
R.
Goldstein,
J.
A.
Goldstein and
C.
Lung
Zachary), Lecture Notes in Math. No
1294,
Springer,
(1989)
68-82.
[7]
Goldstein,
J.
A. and
G.
R.
Rieder,
Thomas-Fermi theory with
an external magnetic
field,
J.
Math Phys.
32 (1991), 2907-2919.
[8]
Heinricher,
A.
C.
and V.
J.
Mizel,
The Lavrentiev phenomenon
for invariant variational problems,
Arch. Rat. Mech. Anal.
102
(1988), 57-93.
[9]
Hoffmann-Ostenhof, M.,
T.
Hoffmann-Ostenhof, and H. Strem-
nitzer,
Electronic wave functions near coalescence points,
to
ap-
pear.
[lo]
Hoffmann-Ostenhof, M. and R. Seiler,
Cusp conditions for
eigenfunctions of N-electron systems,
Phys. Rev.
A23 (19Sl),
21-23.
[ll]
Kato,
T.,
On the eigenfunctions of many particle systems in
quantum mechanics,
Comm. Pure Appl. Math.
10 (1957), 151-
171.
[12]
Lieb,
E.
H. and
B.
Simon,
Thonias-Fermi theory revisted,
Phys.
Rev. Lett.
33 (1973), 681-683.
[13]
Lieb,
E.
H. and
B.
Simon,
The Thomas-Fermi theory ofatoms,
molecules, and solids,
Adv. Math.
23 (1977), 22-116.
[14]
Lung.
C.
A.,
The Nuclear
Cusp
Condition in Spin Polarized
Thomas-Fermi Theory,
P1i.D. Thesis, Tulane University,
1992.
[15]
Mizel, V.
J.,
Developments
in
one-dimensional calculus of vari-
ations affecting continuum mechanics,
in Proceedings
of
KIT
Mathematics Workshop, Vol.
4,
Taejon, Korea
(1989), 83-103.
[16]
Pam, R.
G.
and
S.
I(.
Ghosh,
Thomas-Fermi theoryfor atomic
systems,
Proc. Nat. Acad. Sci. USA
83 (1983), 3577-3579.
[17]
Parr, R. G. and W. Yang,
Density-Functional Theory of Atoms
and Molecules,
Oxford U.
Press,l989.