Spectral Deformations and Soliton Equations
137
[18]
F.
Ehlers and 1-1. Knorrer, Comment. Math. Helv.
57
(1982),
1-10.
[19]
N.
M. Ercolani and 11. Flaschka, Phil. Trans. Roy. SOC. London
A315
(1985), 405-422.
[20]
N.
Ercolani and
H.
P.
McKean, Invent. math.
99
(1990), 483-
544.
[21]
A. Finkel,
E.
Isaacson, and
E.
Trubowitz, SIAM
J.
Math. Anal.
18
(1987), 46-53.
[22]
C.
S.
Gardner,
J.
M. Greene,
M.
D.
Kruskal, and
R.
M.
Miura,
Commun. Pure Appl. Math.
27
(1974), 97-133.
[23]
I. M. Gel’fand and
B.
M.
Levitan, Amer. Math. SOC. Transl.
Ser.
2,
1
(1955), 253-304.
[24]
F.
Gesztesy, in
Ideas and Methods in Mathematical Analysis,
Stochastics, and Applications,
Vol.
1,
S.
Albeverio,
J.
E.
Fen-
stad, H. Elolden, and
T.
Lindstroin (eds.), Cambridge Univ.
Press,
1992,
pp.
428-471.
[25]
F.
Gesztesy, A complete spectral characterization
of
the double
commutation method, preprint,
1992.
[26]
F.
Gesztesy and
R.
Svirsky,
(m)
KdV -solitons on
the
back-
ground
of
quasi-periodic finite-gap solutions,
preprint,
1991.
[27]
F.
Gesztesy and
R.
Weiltard, in preparation.
[28]
F.
Gesztesy,
W.
I<arwowsl<i, and Z. Zhao, Bull. Amer. Math.
SOC.,
to
appear.
[29]
F.
Gesztesy,
W.
Karwowski, and
Z.
Zhao, Duke Math.
J.,
to
appear.
[30]
P.
G.
Grinevich and
I.
M. Krichever, in
Soliton theory:
a
survey
of
results,
A.
P.
Fordy (ed.), Manchester Univ. Press, Manch-
ester,
1990,
pp.
354-400.