Geometrical Aspects of Symmetrization 181
5. J.Brothers & W.Ziemer, Minimal rearrangements of Sobolev functions, J.
reine. angew. Math., 384 (1988), 153–179
6. Yu.D.Burago & V.A.Zalgaller, Geometric inequalities, Springer, Berlin,
1988
7. A.Burchard, Steiner symmetrization is continuous in W
1,p
, Geom. Funct.
Anal. 7 (1997), 823–860
8. E.Carlen & M.Loss, Extremals of functionals with competing symmetries, J.
Funct. Anal. 88 (1990), 437–456
9. M.Chlebik, A.Cianchi & N.Fusco, Perimeter inequalities for Steiner sym-
metrization: cases of equalities, Annals of Math., 165 (2005), 525–555
10. A.Cianchi & N.Fusco, Functions of bounded variation and rearrangements,
Arch. Rat. Mech. Anal. 165 (2002), 1–40
11. A.Cianchi & N.Fusco, Minimal rearrangements, strict convexity and critical
points, to appear on Appl. Anal.
12. E.De Giorgi, Su una teoria generale della misura (r−1)-dimensionale in uno
spazio a r dimensioni, Ann. Mat. Pura Appl. (4), 36 (1954), 191–213
13. E.De Giorgi, Nuovi teoremi relativi alle misure (r − 1)-dimensionali in uno
spazio a r dimensioni, Ricerche Mat., 4 (1955), 95–113
14. E.De Giorgi, Sulla propriet`a isoperimetrica dell’ipersfera, nella classe degli
insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei Mem.
Cl.Sci.Fis.Mat.Nat.Sez.I,5 (1958), 33–44
15. L.C.Evans & R.F.Gariepy, Lecture notes on measure theory and fine proper-
ties of functions, CRC Press, Boca Raton, 1992
16. H.Federer, Geometric measure theory, Springer, Berlin, 1969
17. A.Ferone & R.Volpicelli, Minimal rearrangements of Sobolev functions: a
new proof, Ann. Inst. H.Poincar´e, Anal. Nonlin´eaire 20 (2003), 333–339
18. M.Giaquinta, G.Modica & J.Sou
ˇ
cek, Cartesian currents in the calculus of
variations, Part I: Cartesian currents, Part II: Variational integrals, Springer,
Berlin, 1998
19. B.Kawohl, Rearrangements and level sets in PDE, Lecture Notes in Math.
1150, Springer, Berlin, 1985
20. B.Kawohl,
On the isoperimetric nature of a rearrangement inequality and its
consequences for some variational problems, Arch. Rat. Mech. Anal. 94 (1986),
227–243
21. G.P
´
olya & G.Szeg
¨
o, Isoperimetric inequalities in mathematical physics, An-
nals of Mathematical Studies 27, Princeton University Press, Princeton, 1951
22. Steiner, Einfacher Beweis der isoperimetrischen Haupts¨atze, J. reine angew
Math. 18 (1838), 281–296, and Gesammelte Werke, Vol. 2, 77–91, Reimer, Berlin,
1882
23. G.Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110
(1976), 353–372
24. G.Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz
spaces, Ann. Mat. Pura Appl. 120 (1979), 159–184
25. G.Talenti, The standard isoperimetric theorem, inHandbookofconvexgeom-
etry, P.M.Gruber and J.M.Wills eds, North-Holland, Amsterdam, 1993
26. A.I.Vol’pert, Spaces BV and quasi-linear equations, Math. USSR Sb., 17
(1967), 225–267
27. W.P.Ziemer, Weakly differentiable functions, Springer, New York, 1989