X Contents
A Visit with the ∞-Laplace Equation
Michael G. Crandall .............................................. 75
1 Notation ..................................................... 78
2 TheLipschitz Extension/VariationalProblem..................... 79
2.1 Absolutely Minimizing Lipschitz iff Comparison With Cones . . . . 83
2.2 Comparison With Cones Implies ∞-Harmonic ................ 84
2.3 ∞-HarmonicImplies ComparisonwithCones ................. 86
2.4 Exercises andExamples.................................... 86
3From∞-Subharmonic to ∞-Superharmonic....................... 88
4 More Calculus of ∞-Subharmonic Functions . . . . . . . . . . . . . . . . . . . . . . 89
5 ExistenceandUniqueness ...................................... 97
6 The Gradient Flow and the Variational Problem
for |Du|
L
∞
.................................................102
7 Linear on All Scales ...........................................105
7.1 Blow UpsandBlow DownsareTight on aLine ...............105
7.2 Implications of Tight on a Line Segment . . . . . . . . . . . . . . . . . . . . . 107
8 An Impressionistic History Lesson ...............................109
8.1 The Beginning and Gunnar Aronosson . . . . . . . . . . . . . . . . . . . . . . . 109
8.2 Enter ViscositySolutions andR.Jensen .....................111
8.3 Regularity................................................113
Modulusof Continuity .....................................113
Harnack and Liouville . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
ComparisonwithCones,FullBorn ..........................114
Blowupsare Linear........................................115
Savin’s Theorem ..........................................115
9 Generalizations, Variations, Recent Developments and Games . . . . . . . 116
9.1 What is ∆
∞
for H(x, u, Du)?...............................116
9.2 GeneralizingComparison with Cones ........................118
9.3 The MetricCase ..........................................118
9.4 PlayingGames............................................119
9.5 Miscellany................................................119
References ......................................................120
Weak KAM Theory and Partial Differential Equations
Lawrence C. Evans ...............................................123
1 Overview,KAM theory ........................................123
1.1 Classical Theory ..........................................123
The Lagrangian Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
The Hamiltonian Viewpoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Canonical Changes of Variables, Generating Functions . . . . . . . . . 126
Hamilton–Jacobi PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
1.2 KAM Theory ............................................127
Generating Functions, Linearization. . . . . . . . . . . . . . . . . . . . . . . . . . 128
Fourierseries .............................................128
Small divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129