A Visit with the ∞-Laplace Equation 121
14. Barron, E. N., Evans, L. C. and Jensen, R. The infinity Laplacian, Aron-
sson’s equation and their generalizations,preprint.
15. Bieske, T., On ∞-harmonic functions on the Heisenberg group, Comm. Partial
Differential Equations 27 (2002), no. 3-4, 727–761.
16. Bieske, T., Viscosity solutions on Grushin-type planes, Illinois J. Math. 46
(2002), no. 3, 893–911.
17. Bieske, T., Lipschitz extensions on generalized Grushin spaces, Michigan Math.
J. 53 (2005), no. 1, 3–31.
18. Bieske, T. and Capogna, L., The Aronsson-Euler equation for absolutely min-
imizing Lipschitz extensions with respect to Carnot-Carath´eodory metrics, Trans.
Amer. Math. Soc. 357 (2005), no. 2, 795–823.
19. Bhattacharya, T., An elementary proof of the Harnack inequality for non-
negative infinity-superharmonic functions, Electron. J. Differential Equations,
No. 44 (2001), 8 pp. (electronic).
20. Bhattacharya, T., On the properties of ∞-harmonic functions and an appli-
cation to capacitary convex rings, Electron. J. Differential Equations, No. 101,
(2002), 22 pp. (electronic).
21. Bhattacharya, T., A note on non-negative singular infinity-harmonic func-
tions in the half-space., Rev. Mat. Complut. 18 (2005), no. 2, 377–385.
22. Bhattacharya, T., On the behaviour of ∞-harmonic functions near isolated
points, Nonlinear Anal. 58 (2004), no. 3-4, 333–349.
23. Bhattacharya, T., On the behaviour of ∞-harmonic functions on some special
unbounded domains, Pacific J. Math. 19 (2004) no. 2, 237–253.
24. Bhattacharya, T., DiBenedetto, E. and Manfredi, J., Limits as p →∞
of ∆
p
u
p
= f and related extremal problems, Some topics in nonlinear PDEs
(Turin, 1989). Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, 15–68
(1991).
25. Champion, T., De Pascale L., A principle of comparison with distance func-
tion for absolute minimizers,preprint.
26. Champion, T., De Pascale L. and Prinari F., Γ -convergence and absolute
minimizers for supremal functionals, ESAIM Control Optim. Calc. Var., 10
(2004) no. 1, 14–27.
27. Crandall, M. G., An efficient derivation of the Aronsson equation, Arch. Ra-
tional Mech. Anal. 167 (2003) 271–279.
28. Crandall, M. G., Gunarson, G. and Wang, P. Y., Uniqueness of ∞-
harmonic functions in unbounded domains,preprint.
29. Crandall, M. G., Evans, L. C. and Gariepy, R. F., Optimal Lipschitz
extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations
13 (2001), no. 2, 123–139.
30. Crandall, M. G. and Evans, L. C., A remark on infinity harmonic func-
tions, Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Vi˜adel
Mar-Valparaiso, 2000), 123–129 (electronic), Electron. J. Differ. Equ. Conf., 6,
Southwest Texas State Univ., San Marcos, TX, 2001.
31. Crandall, M. G., Ishii, H. and Lions, P. L., User’s guide to viscosity so-
lutions of second-order partial differential equations, Bull. Am. Math. Soc. 27
(1992), 1–67.
32. Evans, L. C., On solving certain nonlinear partial differential equa-
tions by accretive operator methods, Israel J. Math. 36 (1980), 225-247.
33. Evans,L.C.andYu,Y., Various properties of solutions of the infinity-Laplace
equation,preprint.