Sunden CH011.tex 10/9/2010 15: 22 Page 456
456 Computational Fluid Dynamics and Heat Transfer
[51] Oldham, M. J., Mannix,R.C., and Phalen, R.F. Deposition ofmonodisperseparticles
in hollow models representing adult and child-size tracheobroncial airways, Health
Physics, 72(6), pp. 827–833, 1997.
[52] Broday,D.M. Deposition of ultrafineparticles at carinal ridges oftheupperbronchial
airways,Aerosol Science andTechnology, 38, pp. 991–1000, 2004.
[53] Zhang, Z., and Kleinstreuer, C. Airflow structures and nano-particle deposition in a
human upper airway model, Journal of Computational Physics, 198(1), pp. 178–210,
2004.
[54] Chen,F.,andLai,A.C.K.AnEulerianmodelforparticledepositionunderelectrostatic
and turbulent conditions, Journal of Aerosol Science, 35, pp. 47–62, 2004.
[55] Cohen, B. S., Sussman, R. G., and Lippmann, M. Ultrafine particle deposition in a
human tracheobronchial cast, Aerosol Science and Technology, 12, pp. 1082–1093,
1990.
[56] van Ertbruggen, C., Hirsch, C., and Paiva, M. Anatomically based three-dimensional
model of airways to simulate flow and particle transport using computational fluid
dynamics, Journal of Applied Physiology, 98(3), pp. 970–980, 2005.
[57] Pedley, T. J. Pulmonary fluid dynamics, Annual Review of Fluid Mechanics,9,
pp. 229–274, 1977.
[58] Chan,T. L., Schreck, R. M., and Lippmann, M. Effect of the laryngeal jet on particle
deposition in the human trachea and upper bronchial airways, Journal of Aerosol
Science, 11, pp. 447–459, 1980.
[59] Gurman, J. L., Lippmann, M., and Schlesinger, R. B. Particle deposition in replicate
casts of the humanuppertrancheobronchialtree under constant andcyclicinspiratory
flow. I. Experimental,Aerosol Science and Technology, 3, pp. 245–252, 1984.
[60] Martonen,T.B.,Zhang,Z.,andLessmann,R.Fluiddynamicsofthehumanlarynxand
upper tracheobronchial airways, Aerosol Science and Technology, 19, pp. 133–144,
1993.
[61] Corcoran,T.E.,andChigier,N.Inertialdepositioneffects:Astudyofaerosolmechan-
ics in the trachea using laser Doppler velocimetry and fluorescent dye, Journal of
Biomechanical Engineering, 124, pp. 629–637, 2002.
[62] Kabilan, S., Lin, C. L., and Hoffman, E. A. Characteristics of airflow in a CT-based
ovine lung: A numerical study, Journal of Applied Physiology, 102, pp. 1469–1482,
2007.
[63] Li, Z., Kleinstreuer, C., and Zhang, Z. Particle deposition in the human tracheo-
bronchialairwaysduetotransientinspiratoryflowpatterns,JournalofAerosolScience,
38, pp. 625–644, 2007.
[64] Lin, C. L., Tawhai, M. H., McLennan, G., and Hoffman, E.A. Characteristics of the
turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways,
Respiratory Physiology and Neurobiology, 157, pp. 295–309, 2007.
[65] Nowak, N., Kakade, P. P., and Annapragada, A. V. Computational fluid dynamics
simulation of airflow and aerosol deposition in human lungs, Annals of Biomedical
Engineering, 31, pp. 374–390, 2003.
[66] Zhang, Z., Kleinstreuer, C., and Kim, C. S. Cyclic micron-size particle inhalation
and deposition in a triple bifurcation lung airway model, Journal of Aerosol Science,
33(2), pp. 257–281, 2002.
[67] Cheng, K. H., Cheng, Y. S., Yeh, H. C., and Swift, D. L. Deposition of ultrafine
aerosols in the head airways during natural breathing and during simulated breath-
holding using replicate human upper airway casts, Aerosol Science and Technology,
23(3), pp. 465–474, 1995.