Sunden CH011.tex 10/9/2010 15: 22 Page 454
454 Computational Fluid Dynamics and Heat Transfer
[16] Schlesinger, R. B., and Lippmann, M. Particle deposition in casts of the human
upper tracheobronchial tree, American Industrial Hygiene Association Journal, 33,
pp. 237–251, 1972.
[17] Zhang, Z., Kleinstreuer, C., Donohue, J. F., and Kim, C. S. Comparison of micro-
andnano-sizeparticle depositionsinahumanupperairwaymodel,Journal ofAerosol
Science, 36(2), pp. 211–233, 2005.
[18] Balashazy, I., Hofmann,W., andHeistracher,T.Localparticledepositionpatternsmay
play a key role in the development of lung cancer, Journal of Applied Physiology, 94,
pp. 1719–1725, 2003.
[19] Kimbell, J. S., Subramaniam, R. P., Gross, E. A., Schlosser, P. M., and Morgan,
K. T. Dosimetry modeling of inhaled formaldehyde: Comparisons of local flux pre-
dictions in the rat, monkey, and human nasal passages,Toxicological Sciences, 64(1),
pp. 100–110, 2001.
[20] Longest, P. W., and Xi, J. Computational investigation of particle inertia effects on
submicron aerosol deposition in the respiratory tract, Journal of Aerosol Science,
38(1), pp. 111–130, 2007.
[21] Shi, H., Kleinstreuer, C., Zhang, Z., and Kim, C. S. Nanoparticle transport and
depositioninbifurcatingtubeswithdifferentinletconditions,PhysicsofFluids, 16(7),
pp. 2199–2213, 2004.
[22] Phalen, R. F., Oldham, M. J., and Nel, A. E. Tracheobronchial particle dose consid-
erations for in vitro toxicology studies, Toxicological Sciences, 92(1), pp. 126–132,
2006.
[23] Longest,P.W., andOldham, M.J.MutualenhancementsofCFDmodelingandexperi-
mentaldata:A case study of one micrometer particle deposition in a branching airway
model, Inhalation Toxicology, 18(10), pp. 761–772, 2006.
[24] Robinson, R. J., Oldham, M. J., Clinkenbeard, R. E., and Rai, P. Experimental
and numerical smoke carcinogen deposition in a multi-generation human replica
tracheobronchialmodel,AnnalsofBiomedicalEngineering,34(3),pp.373–383,2006.
[25] Longest, P. W., and Oldham, M. J. Numerical and experimental deposition of fine
respiratory aerosols: Development of a two-phase drift flux model with near-wall
velocity corrections, Journal ofAerosol Science, 39, pp. 48–70, 2008.
[26] Hofmann, W., Golser, R., and Balashazy, I. Inspiratory deposition efficiency of ultra-
fine particles in a human airway bifurcation model,Aerosol Science andTechnology,
37(12), pp. 988–994, 2003.
[27] Ingham, D. B. Diffusion of aerosols in the entrance region of a smooth cylindrical
pipe, Journal of Aerosol Science, 22(3), pp. 253–257, 1991.
[28] Martonen, T. B., Zhang, Z., andYang,Y. Particle diffusion with entrance effects in a
smooth-walled cylinder, Journal ofAerosol Science, 27(1), pp. 139–150, 1996.
[29] Longest, P. W., Kleinstreuer, C., and Buchanan, J. R. Efficient computation of micro-
particle dynamics including wall effects, Computers & Fluids, 33(4), pp. 577–601,
2004.
[30] Longest, P. W., and Xi, J. Effectiveness of direct Lagrangian tracking models for sim-
ulatingnanoparticle deposition in the upper airways,Aerosol Science andTechnology,
41, pp. 380–397, 2007.
[31] Fernandez de laMora, J., and Rosner, D. E. Effects of inertia onthe diffusional depo-
sition of small particles to spheresand cylinders at lowReynoldsnumbers, Journal of
Fluid Mechanics, 125, pp. 379–395, 1982.
[32] Friedlander, S. K. Smoke, Dust and Haze: Fundamentals ofAerosol Dynamics, 2 ed.,
Oxford University Press, NewYork, 2000.