- 44 -
рический конденсатор смешения 3 (смесительный ТА), где, контактируя с
водой, конденсируется, образуя вакуум.
Упаренный раствор (S
1
, a
1
, t
К
) отводится из аппарата. Также отводятся
конденсаты из обоих корпусов: первого (D
П
, T
1
, h
К
) и второго (D
К
, T, h
К
).
Расчёт выпарной установки, состоящей из трёх узлов, осуществляется
последовательно, начиная с первого корпуса. В основе лежат уравнения: теп-
лопередачи, теплового и материального баланса.
S
0
= S
1
+ W; (7.1)
S
0
a
0
= S
1
a
1
. (7.2)
После преобразования уравнений (7.1) и (7.2) получаем формулу для
определения количества выпаренного растворителя:
0
0
1
(7.3)
Уравнение теплового баланса составляется по принципу «приход =
= расходу»:
D
К
h + S
0
C
0
t
Н
= S
1
C
1
t
К
+ D
К
h
К
+ Wh + Q
0
. (7.4)
Используя правило линейности:
S
0
C
0
= S
1
C
1
+ C
В
W, (7.5)
делая подстановку и группировку членов уравнения (7.4), без учёта потерь в
окружающую среду (Q
0
= 0), получаем расчётное уравнение:
Q = D
К
(h
Г
– h
К
) = S
0
C
0
(t
К
– t
0
) + W(h
1
– C
В
t
Р
). (7.6)
Количество греющего пара D
К
находим по уравнению:
0 0 К 0
К
Г
К
h h
(7.7)
Поверхность теплообмена F
ОР
определяем из уравнения:
Q = KΔt
СР
F, (7.8)
предварительно рассчитав величину Δt
СР
и задавшись значением K
ОР
.
Далее по F
ОР
выбираем выпарной аппарат и его конструктивные разме-
ры: H, d
Н
/d
ВН
, Z – число ходов, n – число трубок, рядов и др. Это, так назы-
ваемые, предварительные размеры аппарата. Окончательные (расчётные)
размеры поверхности теплообмена F определяются методом итерации из
уравнения:
4
3
1 0,7
К
0b
3
1 1 Q Qδ 1 1 Q
T t A λ B
F
F
(7.9)
Сравнивая F и F
ОР
, определяем степень приближения и при значитель-
ном расхождении (более 10 %) делаем перерасчёт.
Подогреватель исходного раствора 1 рассчитывается как ТА, в котором
конденсирующимся паром нагревается исходный раствор.
Расчёт барометрического конденсатора смешения 3 заключается в оп-
ределении расхода охлаждающей воды G
В
, количества неконденсирующихся
газов V
Г
, мощности вакуум-насоса для их откачки и геометрических разме-
ров аппарата, и базируется на уравнении теплового баланса, Бернулли,
сплошности.
Процесс выпаривания является весьма энергоёмким процессом, тре-
бующим значительного расхода греющего пара (1 кг греющего пара пример-
но равен 1 кг вторичного пара), поэтому для его уменьшения широко исполь-
зуют многокорпусные выпарные аппараты, состоящие из ряда однокорпус-
ных аппаратов последовательно соединённых между собой. Наиболее широ-