Статья
  • формат pdf
  • размер 829,37 КБ
  • добавлен 24 сентября 2016 г.
Тарков М.С. Нейрокомпьютерные системы
Новосибирск, ? — 136 c.
Излагаются основы построения нейрокомпьютеров. Дается детальный обзор и описание важнейших методов обучения нейронных сетей различной структуры, а также задач, решаемых этими сетями. Рассмотрены вопросы реализации нейронных сетей.
Искусственные нейронные сети реализуют одну из парадигм искусственного интеллекта, а именно, коннекционистскую. Это означает, что преобразование, выполняемое сетью, определяется значениями весовых коэффициентов и топологией межнейронных соединений. Вместо программирования в традиционных вычислительных системах здесь используется обучение сети, которое сводится к настройке весовых коэффициентов с целью оптимизации заданного критерия качества функционирования сети. Нейронные сети хорошо решают те задачи, которые с трудом поддаются алгоритмизации: распознавание образов, реализация ассоциативной памяти, комбинаторная оптимизация.В курсе лекций рассматриваются: основные модели искусственного нейрона и сетей, использующих искусственный нейрон в качестве своего элемента; варианты обучения сетей: обучение с учителем и самообучение (самоорганизация). Обученная сеть подвергается редукции (упрощению) с целью повышения эффективности ее реализации и функционирования. Нейронные сети могут быть реализованы как электронным (на основе СБИС), так и оптическим способами.