Финансово-экономические дисциплины
  • формат pdf
  • размер 754.37 КБ
  • добавлен 24 августа 2010 г.
Cochrane John H. Time Series for Macroeconomics and Finance
Graduate School of Business. 1997
What is a time series?
ARMA model
The a utocorrelation and autocovariance functions
Prediction and Impulse-Response Functions
Stationarity and Wold representation
VARs: orthogonalization, variance decomposition, Granger causality
Spectral Representation
Spectral alanalysis in finite samples
Unit Roots
Cointegration
Смотрите также

Analysis of financial time series, Financial Econometrics. Tsay, R.S. (Анализ финансовых временных рядов)

  • формат pdf
  • размер 4.87 МБ
  • добавлен 23 декабря 2010 г.
John Wiley & Sons Inc. , 2002. 458 страниц. Contents: Financial Time Series and Their Characteristics Asset Returns, Distributional Properties of Returns, Processes Considered. Linear Time Series Analysis and Its Applications Stationarity, Correlation and Autocorrelation Function, White Noise and Linear Time Series, Simple Autoregressive Models, Simple Moving-Average Models, Simple ARMA Models, Unit-Root Nonstationarity, Seasonal Models,...

Applied Time Series Econometrics - Lutkepohl, H., Kratzig, M. (Прикладная эконометрика временных рядов)

  • формат pdf
  • размер 7.66 МБ
  • добавлен 04 февраля 2011 г.
Time series econometrics is a rapidly evolving field. In particular, the cointegration revolution has had a substantial impact on applied analysis. As a consequence of the fast pace of development, there are no textbooks that cover the full range of methods in current use and explain how to proceed in applied domains. This gap in the literature motivates the present volume. The methods are sketched out briefly to remind the reader of the ideas un...

Genshiro Kitagawa. Introduction to Time Series Modeling (Введение в моделирование временных рядов)

  • формат pdf
  • размер 7.02 МБ
  • добавлен 04 февраля 2011 г.
Chapman & Hall/CRC, 2010. 305 pages. This book aims at introducing and explaining basic methods of building models for time series. In time series modeling, we try to express the behavior of a certain phenomenon in relation to the past values of itself and other covariates. Since many important phenomena in statistical analysis are actually time series and the identification of conditional distribution of the phenomenon is an essential part o...

Golyandina N., Nekrutkin V., Zhglyavivsky A. Analysis of Time Series Structure: SSA and Related Techniques

  • формат pdf
  • размер 5.15 МБ
  • добавлен 24 августа 2010 г.
Chapman & Hall. 2001. Pages: 320 Singular spectrum analysis (SSA) has proven very successful. It has already become a standard tool in climatic and meteorological time series analysis and well known in nonlinear physics and signal processing. However, despite the promise it holds for time series applications in other disciplines, SSA is not widely known among statisticians and econometrists, and although the basic SSA algorithm looks simple,...

Hamilton James D. Time Series Analysis

  • формат djvu
  • размер 5.43 МБ
  • добавлен 20 июня 2010 г.
1994 г. Анализ финансовых временных рядов. посмотреть оглавление можно по этой ссылке: *

Xekalaki E., Degiannakis S. ARCH Models for Financial Applications

  • формат pdf
  • размер 6.57 МБ
  • добавлен 28 января 2012 г.
Wiley – 2010, 550 pages ISBN 9780470066300 Autoregressive Conditional Heteroskedastic (ARCH) processes are used in finance to model asset price volatility over time. This book introduces both the theory and applications of ARCH models and provides the basic theoretical and empirical background, before proceeding to more advanced issues and applications. The Authors provide coverage of the recent developments in ARCH modelling which can be imple...