Финансово-экономические дисциплины
  • формат pdf
  • размер 6.57 МБ
  • добавлен 28 января 2012 г.
Xekalaki E., Degiannakis S. ARCH Models for Financial Applications
Wiley – 2010, 550 pages
ISBN 9780470066300


Autoregressive Conditional Heteroskedastic (ARCH) processes are used in finance to model asset price volatility over time. This book introduces both the theory and applications of ARCH models and provides the basic theoretical and empirical background, before proceeding to more advanced issues and applications. The Authors provide coverage of the recent developments in ARCH modelling which can be implemented using econometric software, model construction, fitting and forecasting and model evaluation and selection.
Contents:
Prologue
Notation
What is an ARCH process?
Introduction
The Autoregressive Conditionally Heteroskedastic Process
The Leverage Effect
The Non-trading Period Effect
Non-synchronous Trading Effect
The Relationship between Conditional Variance and Conditional Mean
ARCH Volatility Specifications
Model Specifications
Methods of Estimation
. Estimating the GARCH Model with EViews : An Empirical Example.
. Asymmetric Conditional Volatility Specifications
. Simulating ARCH Models Using EViews
. Estimating Asymmetric ARCH Models with GARCH OxMetrics – An Empirical Example.
. Misspecification Tests
Other ARCH Volatility Specifications
Other Methods of Volatility Modeling
Interpretation of the ARCH Process
Fractionally Integrated ARCH Models
Fractionally Integrated ARCH Model Specifications
Estimating Fractionally Integrated ARCH Models Using GARCH OxMetrics – An Empirical Example
A More Detailed Investigation of the Normality of the Standardized Residuals – Goodness-of-fit Tests
Volatility Forecasting: An Empirical Example Using EViews
One-step-ahead Volatility Forecasting
Ten-step-ahead Volatility Forecasting
Other Distributional Assumptions
Non-Normally Distributed Standardized Innovations
Estimating ARCH Models with Non-Normally Distributed Standardized Innovations Using GARCH OxMetrics – An Empirical Example
Estimating ARCH Models with Non-Normally Distributed Standardized Innovations Using EViews – An Empirical Example
Estimating ARCH Models with Non-Normally Distributed Standardized Innovations Using EViews – The LogL Object
Volatility Forecasting: An Empirical Example Using GARCH Ox
Intra-Day Realized Volatility Models
Realized Volatility
Intra-Day Volatility Models
Intra-Day Realized Volatility & ARFIMAX Models in GARCH OxMetrics – An Empirical example
Applications in Value-at-Risk, Expected Shortfalls, Options Pricing
One-day-ahead Value-at-Risk Forecasting
One-day-ahead Expected Shortfalls Forecasting
FTSE Index: One-step-ahead Value-at-Risk and Expected Shortfall Forecasting
Multi-period Value-at-Risk and Expected Shortfalls Forecasting
ARCH Volatility Forecasts in Black and Scholes Option Pricing
ARCH Option Pricing Formulas
Implied Volatility Indices and ARCH Models
Implied Volatility
The VIX Index
The Implied Volatility Index as an Explanatory Variable
ARFIMAX Modeling for Implied Volatility Index
ARCH Model Evaluation and Selection
Evaluation of ARCH Models
Selection of ARCH Models
Application of Loss Functions as Methods of Model Selection.
The SPA Test for VaR and Expected Shortfalls
Multivariate ARCH Models
Model Specifications
Maximum Likelihood Estimation
Estimating Multivariate ARCH Models Using EViews
Estimating Multivariate ARCH Models Using GARCH .
Evaluation of Multivariate ARCH Models
References
Author Index
Subject Index.
Смотрите также

Лукашин Ю.П. Адаптивные методы краткосрочного прогнозирования временных рядов

  • формат pdf
  • размер 11.97 МБ
  • добавлен 14 августа 2007 г.
Учеб. пособие. М.: Финансы и статистика, 2003 г. - 416 с: ил. Посвящено построению статистических моделей с переменными параметрами для прогнозирования нестационарных временных рядов. Рассмотрены адаптивные модели полиномиальных и стохастических трендов, сезонных и циклических колебаний, гистограмм, модели семейства ARIMA, ARCH. Приводятся примеры прогнозирования курсов акций, валют, цен на золото. Материалы пособия апробированы на занятиях в МЭ...

Analysis of financial time series, Financial Econometrics. Tsay, R.S. (Анализ финансовых временных рядов)

  • формат pdf
  • размер 4.87 МБ
  • добавлен 23 декабря 2010 г.
John Wiley & Sons Inc. , 2002. 458 страниц. Contents: Financial Time Series and Their Characteristics Asset Returns, Distributional Properties of Returns, Processes Considered. Linear Time Series Analysis and Its Applications Stationarity, Correlation and Autocorrelation Function, White Noise and Linear Time Series, Simple Autoregressive Models, Simple Moving-Average Models, Simple ARMA Models, Unit-Root Nonstationarity, Seasonal Models,...

Applied Time Series Econometrics - Lutkepohl, H., Kratzig, M. (Прикладная эконометрика временных рядов)

  • формат pdf
  • размер 7.66 МБ
  • добавлен 04 февраля 2011 г.
Time series econometrics is a rapidly evolving field. In particular, the cointegration revolution has had a substantial impact on applied analysis. As a consequence of the fast pace of development, there are no textbooks that cover the full range of methods in current use and explain how to proceed in applied domains. This gap in the literature motivates the present volume. The methods are sketched out briefly to remind the reader of the ideas un...

Genshiro Kitagawa. Introduction to Time Series Modeling (Введение в моделирование временных рядов)

  • формат pdf
  • размер 7.02 МБ
  • добавлен 04 февраля 2011 г.
Chapman & Hall/CRC, 2010. 305 pages. This book aims at introducing and explaining basic methods of building models for time series. In time series modeling, we try to express the behavior of a certain phenomenon in relation to the past values of itself and other covariates. Since many important phenomena in statistical analysis are actually time series and the identification of conditional distribution of the phenomenon is an essential part o...

Golyandina N., Nekrutkin V., Zhglyavivsky A. Analysis of Time Series Structure: SSA and Related Techniques

  • формат pdf
  • размер 5.15 МБ
  • добавлен 24 августа 2010 г.
Chapman & Hall. 2001. Pages: 320 Singular spectrum analysis (SSA) has proven very successful. It has already become a standard tool in climatic and meteorological time series analysis and well known in nonlinear physics and signal processing. However, despite the promise it holds for time series applications in other disciplines, SSA is not widely known among statisticians and econometrists, and although the basic SSA algorithm looks simple,...