Учеб. пособие. - Финансы и статистика, 2004. - 242 с.
Материал пособия базируется на результатах обработки разнообразной информации, определяющей состояние экономических объектов.
Большое внимание уделено различным методам оценивания рефессионных параметров.
Известные алгоритмы прогнозирования стохастических рядов, основанные на моделях типа AR, МА, ARMA, AR1MA, обобщаются в форме матрично-векторной модели в терминах стохастического вектора состояния, и на ее основе строится рекуррентный алгоритм прогнозирования калмановского вида.
Для студентов экономических специальностей вузов и аспирантов, выполняющих научные исследования в области математических методов.
Первая часть.
Математические методы восстановления зависимостей по экспериментальным данным.
Задачи регрессионного анализа и предварительный анализ данных.
Проблема восстановления зависимостей по экспериментальным данным.
Функция регрессии и регрессионная модель эндогенных переменных.
Модели, аппроксимирующие функцию регрессии. Гауссовская регрессия.
Некоторые специальные случайные величины и их свойства.
Предварительный (дорегрессионный) анализ зависимости эндогенной и экзогенных переменных.
Методы оценивания параметров регрессионных моделей.
Проблема оценивания и общие характеристики точечных оценок. Неравенство Рао-Крамера.
Операции многомерного дифференцирования.
Метод наименьших квадратов.
Максимально правдоподобные оценки регрессионных параметров.
Метод максимума апостериорной плотности вероятностей.
Байесовские оценки регрессионных параметров.
Минимаксные оценки рефессионных параметров.
Вторая часть.
Математические методы обработки временных рядов.
Структурно детерминированные временные ряды.
Математические модели структурно детерминированных временных рядов.
Ортонормированные системы функций.
Предварительное (локальное) сглаживание временных рядов.
Линейное прогнозирование структурно детерминированных рядов.
Рекуррентное прогнозирование структурно детерминированных рядов.
Анализ адекватности модели тренда временного ряда.
Стохастические временные ряды.
Случайные процессы (начальные определения и классификация).
Одномерные характеристики случайного процесса.
Многомерные характеристики случайного процесса. Марковские процессы.
Ковариационные и взаимные ковариационные функции случайных процессов. Белый шум
Стационарные и эргодические случайные процессы.
Спектральная плотность случайного процесса.
Преобразование случайного процесса линейным оператором.
Преобразование случайного процесса оператором свертки.
Формирующие фильтры.
Типовые модели стохастических временных рядов эконометрики.
Стохастический вектор состояния. Обобщенная матрично-векторная модель временного ряда.
Рекуррентный алгоритм прогнозирования стохастических временных рядов (калмановский фильтр).
Нелинейная параметрическая идентификация модели стохастического временного ряда.
Обобщенный рекуррентный алгоритм прогнозирования стохастических временных рядов.
Приложение
1. Операционные методы исследования динамических систем.
Приложение
2. Калмановское прогнозирование развития отдельных отраслей экономики. России.
Литература.
Материал пособия базируется на результатах обработки разнообразной информации, определяющей состояние экономических объектов.
Большое внимание уделено различным методам оценивания рефессионных параметров.
Известные алгоритмы прогнозирования стохастических рядов, основанные на моделях типа AR, МА, ARMA, AR1MA, обобщаются в форме матрично-векторной модели в терминах стохастического вектора состояния, и на ее основе строится рекуррентный алгоритм прогнозирования калмановского вида.
Для студентов экономических специальностей вузов и аспирантов, выполняющих научные исследования в области математических методов.
Первая часть.
Математические методы восстановления зависимостей по экспериментальным данным.
Задачи регрессионного анализа и предварительный анализ данных.
Проблема восстановления зависимостей по экспериментальным данным.
Функция регрессии и регрессионная модель эндогенных переменных.
Модели, аппроксимирующие функцию регрессии. Гауссовская регрессия.
Некоторые специальные случайные величины и их свойства.
Предварительный (дорегрессионный) анализ зависимости эндогенной и экзогенных переменных.
Методы оценивания параметров регрессионных моделей.
Проблема оценивания и общие характеристики точечных оценок. Неравенство Рао-Крамера.
Операции многомерного дифференцирования.
Метод наименьших квадратов.
Максимально правдоподобные оценки регрессионных параметров.
Метод максимума апостериорной плотности вероятностей.
Байесовские оценки регрессионных параметров.
Минимаксные оценки рефессионных параметров.
Вторая часть.
Математические методы обработки временных рядов.
Структурно детерминированные временные ряды.
Математические модели структурно детерминированных временных рядов.
Ортонормированные системы функций.
Предварительное (локальное) сглаживание временных рядов.
Линейное прогнозирование структурно детерминированных рядов.
Рекуррентное прогнозирование структурно детерминированных рядов.
Анализ адекватности модели тренда временного ряда.
Стохастические временные ряды.
Случайные процессы (начальные определения и классификация).
Одномерные характеристики случайного процесса.
Многомерные характеристики случайного процесса. Марковские процессы.
Ковариационные и взаимные ковариационные функции случайных процессов. Белый шум
Стационарные и эргодические случайные процессы.
Спектральная плотность случайного процесса.
Преобразование случайного процесса линейным оператором.
Преобразование случайного процесса оператором свертки.
Формирующие фильтры.
Типовые модели стохастических временных рядов эконометрики.
Стохастический вектор состояния. Обобщенная матрично-векторная модель временного ряда.
Рекуррентный алгоритм прогнозирования стохастических временных рядов (калмановский фильтр).
Нелинейная параметрическая идентификация модели стохастического временного ряда.
Обобщенный рекуррентный алгоритм прогнозирования стохастических временных рядов.
Приложение
1. Операционные методы исследования динамических систем.
Приложение
2. Калмановское прогнозирование развития отдельных отраслей экономики. России.
Литература.