• формат pdf
  • размер 2.12 МБ
  • добавлен 06 ноября 2011 г.
West M. Developing High Quality Data Models
Издательство Elsevier, 2011, -408 pp.

I would like to start by explaining how I came to write this book, and to acknowledge its influences and the help I have received along the way.
I have been extremely fortunate. I have a wonderful wife and two wonderful grown-up children, and I have had all but thirty years working for Shell, which provided an environment that had stimulating challenges and opportunities to look more deeply at problems than is often the case.
I first came across computers in 1971. My undergraduate course was in Chemical Engineering at Leeds University, and we all had to lea how to write basic Fortran programs in our first year. I went on to do a PhD, which involved mathematical modeling of chemical processes and led to my developing an automatic integrator for stiff ordinary differential equations. As a result I am probably among a relatively small group of people who have started a computer by loading the bootstrap program into memory from the switches to boot up the computer.
I joined Shell in 1978 at Shell Haven Refinery on the north bank of the Thames estuary, east of London. I was immediately thrown into the implementation of a computer supervision system for the Crude Distillation Unit, which monitored the hundreds of measurements taken around the unit and waed of deviations from target performance. I spent eight years at Shell Haven, and while I had a wide range of roles, computers and computing were a recurring theme. I was, for example, responsible for the purchase of the first IBM PC on the refinery, and one of the first in Shell for engineering calculations using a spreadsheet, and at the time I left the refinery I was responsible for all the mini-computer based systems on the refinery.
My next move was to London in 1986, where I was a business analyst on one of the first relational database (DB2) implementations in Shell, the Oil Management Project. This was an information system designed to produce an overview of the planned and actual production and sales of oil products by Shell in the UK. It was here where I first came across data models in the Shell UK Oil data architecture and Bruce Ottmann, who ran the data architecture team and who became a major enabler and encourager of much of the work I have done in data management. I immediately found data models fascinating. As a chemical engineer, I was very used to a process view of the world, and data models gave a completely different perspective. I was hooked.
I spent 1989 in The Hague working for Jan Sijbrand. He had a vision for a system’s and data architecture for refineries such that a common suite of systems could develop and evolve to support refinery operations. My part was to develop the data models, which was done through a series of workshops, led by Bruce Ottmann, by now leading the corporate data management group. Ken Self, later to be one of my bosses, was one of the attendees.
I retued to London in 1990 to work for Bruce in a project called the Data Management Key Thrust. Shell’s Committee of Managing Directors had noticed that IT costs were rising exponentially, but it was not clear why so much money was being spent, or whether it was delivering value. They issued an edict that IT costs were to be capped and instituted a number of Key Thrusts to improve matters. The Data Management Key Thrust was one of these.
The next few years were particularly fruitful. What we noticed was that many Shell companies were developing different computer systems to do the same thing, but that these systems were not suitable for other Shell companies. When we investigated why this was the case, we discovered that the data models contained constraints that did not always apply, or meant that historical data could not be held. We looked for and discovered data model pattes that were examples of the traps that data modelers fell into, and what you needed to do to improve those data models. From this we were able to work out principles for data modeling to avoid falling into those traps. We also included a Generic Entity Framework as a high-level data model to help create data models that were consistent with each other. These documents were Reviewing and Improving Data Models and Developing High Quality Data Models, and yes, that is where the title of this book comes from. This book aims to address some of the same issues as the original article, and while there is little if anything of the original documents that has not been updated, some of the same issues and principles are recognizable. Shell made a version of this publicly and freely available and I am pleased to have use of this and to significantly update and extend it.
There was much other work done by that group in information management around information quality and information management maturity that was significant in general, but I will limit myself to the data modeling story.
This book is a distillation and development of what I have leat about data modeling through these many experiences.

Part 1 Motivations and Notations
Introduction
Entity Relationship Model Basics
Some Types and Uses of Data Models
Data Models and Enterprise Architecture
Some Observations on Data Models and Data Modeling
Part 2 General Principles for Data Models
Some General Principles for Conceptual, Integration, and Enterprise Data Models
Applying the Principles for Attributes
General Principles for Relationships
General Principles for Entity Types
Part 3 An Ontological Framework for Consistent Data Models
Motivation and Overview for an Ontological Framework
Spatio-Temporal Extents
Classes
Intentionally Constructed Objects
Systems and System Components
Requirements Specification
Concluding Remarks
Part 4 The HQDM Framework Schema
HQDM_Framework
Читать онлайн
Похожие разделы
  1. Академическая и специальная литература
  2. Биологические дисциплины
  3. Матметоды и моделирование в биологии
  1. Академическая и специальная литература
  2. Военные дисциплины
  3. Матметоды и моделирование в военном деле
  1. Академическая и специальная литература
  2. Геологические науки и горное дело
  3. Матметоды и моделирование в горно-геологической отрасли
  1. Академическая и специальная литература
  2. Информатика и вычислительная техника
  3. Информатика (начальный курс)
  4. Работа в MathCad / MatLab / Maple / Derive
  1. Академическая и специальная литература
  2. Информатика и вычислительная техника
  3. Искусственный интеллект
  4. Эволюционные алгоритмы
  1. Академическая и специальная литература
  2. Информатика и вычислительная техника
  3. Компьютерное моделирование
  1. Академическая и специальная литература
  2. Легкая промышленность
  3. Матметоды и моделирование в легкой промышленности
  1. Академическая и специальная литература
  2. Лесное дело и деревообработка
  3. Матметоды и моделирование в лесном деле и деревообработке
  1. Академическая и специальная литература
  2. Математика
  1. Академическая и специальная литература
  2. Математика
  3. Математическая физика
  1. Академическая и специальная литература
  2. Машиностроение и металлообработка
  3. Конструирование и проектирование в машиностроении
  4. Матметоды и моделирование в машиностроении
  1. Академическая и специальная литература
  2. Медицинские дисциплины
  3. Матметоды и моделирование в медицине
  1. Академическая и специальная литература
  2. Металлургия
  3. Моделирование в металлургии
  1. Академическая и специальная литература
  2. Наноматериалы и нанотехнологии
  3. Матметоды и моделирование в нанотехнологии
  1. Академическая и специальная литература
  2. Науки о Земле
  3. Почвоведение
  4. Матметоды и моделирование в почвоведении
  1. Академическая и специальная литература
  2. Нефтегазовая промышленность
  3. Нефтегазовое дело
  4. Матметоды и моделирование в нефтегазовом деле
  1. Академическая и специальная литература
  2. Промышленное и гражданское строительство
  3. Матметоды и моделирование в строительстве
  1. Академическая и специальная литература
  2. Психологические дисциплины
  3. Матметоды и моделирование в психологии
  1. Академическая и специальная литература
  2. Радиоэлектроника
  3. Матметоды и моделирование в радиоэлектронике
  1. Академическая и специальная литература
  2. Связь и телекоммуникации
  3. Матметоды и моделирование в связи и телекоммуникациях
  1. Академическая и специальная литература
  2. Сельское хозяйство
  3. Матметоды и моделирование в сельском хозяйстве
  1. Академическая и специальная литература
  2. Социологические дисциплины
  3. Методология социологических исследований
  4. Матметоды и моделирование в социологии
  1. Академическая и специальная литература
  2. Топливно-энергетический комплекс
  3. Математические задачи энергетики
  1. Академическая и специальная литература
  2. Физика
  3. Матметоды и моделирование в физике
  1. Академическая и специальная литература
  2. Финансово-экономические дисциплины
  3. Логистика
  4. Матметоды и моделирование в логистике
  1. Академическая и специальная литература
  2. Финансово-экономические дисциплины
  3. Математические методы и моделирование в экономике
  1. Академическая и специальная литература
  2. Химия и химическая промышленность
  3. Матметоды и моделирование в химии
  1. Академическая и специальная литература
  2. Экологические дисциплины
  3. Матметоды и моделирование в экологии
  1. Академическая и специальная литература
  2. Языки и языкознание
  3. Лингвистика
  4. Прикладная лингвистика
  5. Матметоды и моделирование в лингвистике
  1. Прикладная литература
  2. Компьютерная литература
  3. Matlab / Simulink
Смотрите также

Daniels M.J., Hogan J.W. Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis

  • формат pdf
  • размер 3.38 МБ
  • добавлен 25 января 2012 г.
Chapman & Hall/CRC – 2008, 328pages ISBN: 1584886099 Drawing from the authors own work and from the most recent developments in the field, Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis describes a comprehensive Bayesian approach for drawing inference from incomplete data in longitudinal studies. To illustrate these methods, the authors employ several data sets throughout that cover a range of...

Istas J. Mathematical Modeling for the Life Sciences

  • формат pdf
  • размер 1.81 МБ
  • добавлен 10 января 2011 г.
Springer, 2005. - 164 Pages. Proposing a wide range of mathematical models that are currently used in life sciences may be regarded as a challenge, and that is precisely the challenge that this book takes up. Of course this panoramic study does not claim to offer a detailed and exhaustive view of the many interactions between mathematical models and life sciences. This textbook provides a general overview of realistic mathematical models in life...

Khine M.S., Saleh I.M. Models and Modeling: Cognitive Tools for Scientific Enquiry

  • формат pdf
  • размер 4.44 МБ
  • добавлен 11 марта 2011 г.
Springer, 2011. 288 p. ISBN: 9400704488 The process of developing models, known as modeling, allows scientists to visualize difficult concepts, explain complex phenomena and clarify intricate theories. In recent years, science educators have greatly increased their use of modeling in teaching, especially real-time dynamic modeling, which is central to a scientific investigation. Modeling in science teaching is being used in an array of fields,...

Korn G.A. Advanced Dynamic-system Simulation: Model-replication Techniques and Monte Carlo Simulation

  • формат pdf
  • размер 3.34 МБ
  • добавлен 27 мая 2011 г.
Wiley-Interscience, 2007. - 221 pages. Learn the latest techniques in programming sophisticated simulation systems The text begins with an introduction to dynamic-system simulation, including a demonstration of a simple guided-missile simulation. Among the other highlights of coverage are: - Models that involve sampled-data operations and sampled-data difference equations, including improved techniques for proper numerical integration of switc...

Lee S.-Y. Handbook of Latent Variable and Related Models

  • формат pdf
  • размер 2.48 МБ
  • добавлен 14 мая 2011 г.
North Holland, 2007. - 458 Pages. This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine,...

McCulloch C.E., Searle S.R. Generalized, Linear, and Mixed Models

  • формат pdf
  • размер 10.78 МБ
  • добавлен 17 ноября 2011 г.
Wiley-Interscience, 2001. - 348 pages. The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's clas...

McCulloch C.E., Searle S.R. Generalized, Linear, and Mixed Models

  • формат djvu
  • размер 3.92 МБ
  • добавлен 09 января 2012 г.
Wiley-Interscience, 2001. - 348 pages. The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's classi...

Rao R.C., Toutenburg H. Linear Models: Least Squares and Alternatives

  • формат pdf
  • размер 1.73 МБ
  • добавлен 01 декабря 2009 г.
New York: Springer, 1999. - 427 p. Contents: Linear Models, The Linear Regression Model, The Generalized Linear Regression Model , Exact and Stochastic Linear Restrictions, Prediction Problems in the Generalized Regression Model, Sensitivity Analysis, Analysis of Incomplete Data Sets , Robust Regression, Models for Categorical Response Variables and other.

Robinson S. Simulation: The Practice of Model Development and Use

  • формат pdf
  • размер 3.15 МБ
  • добавлен 26 мая 2011 г.
Wiley, 2004. - 336 pages. Simulation models enable the user to better understand and explore improvements to an operations system such as a manufacturing, service, transport or supply system. It is a powerful management tool, providing a means for improving an organization?s efficiency and effectiveness. Advances in modern software mean that simulation is accessible to many organizations. However, there is much more to simulation than simply u...

Wichura M.J. The Coordinate-Free Approach to Linear Models

  • формат pdf
  • размер 1.18 МБ
  • добавлен 15 мая 2011 г.
Cambridge University Press, 2006. - 216 Pages. This book is about the coordinate-free, or geometric, approach to the theory of linear models; more precisely, Model I ANOVA and linear regression models with nonrandom predictors in a finite-dimensional setting. This approach is more insightful, more elegant, more direct, and simpler than the more common matrix approach to linear regression, analysis of variance, and analysis of covariance models i...