528 16. Nonlinear Hyperbolic Equations
[Men] R. Menikoff, Analogies between Riemann problems for 1-D fluid dynamics and
2-D steady supersonic flow, pp.225–240 in W. Lindquist (ed.), Current Progress
in Hyperbolic Systems: Riemann Problems and Computations, Contemp. Math.,
Vol. 100, AMS, Providence, R. I., 1989.
[Met1] G. Metivier, Interaction de deux chocs pour un syst`eme de deux lois de conser-
vation en dimension deux d’espace, TAMS 296(1986), 431–479.
[Met2] G. Metivier, Stability of multi-dimensional weak shocks, Comm. PDE 15(1990),
983–1028.
[Mora] C. Morawetz, An alternative proof of DiPerna’s theorem, CPAM 45(1991), 1081–
1090.
[Nir] L. Nirenberg, An abstract form for the nonlinear Cauchy-Kowalevski theorem,
J. Diff. Geom. 6(1972), 561–576.
[Nis] T. Nishida, Global solutions for an initial boundary value problem of a quasilinear
hyperbolic system, Proc. Jpn. Acad. 44(1968), 642–646.
[NS] T. Nishida and J. Smoller, Solutions in the large for some nonlinear hyperbolic
conservation laws, CPAM 26(1973), 183–200.
[OT] H. Ockendon and A. Tayler, Inviscid Fluid Flows, Appl. Math. Sci. #43, Springer,
New York, 1983.
[Ol1] O. Oleinik, Discontinuous solutions of non-linear differential equations, Uspekhi
Mat. Nauk. 12(1957), 3–73. AMS Transl. 26, 95–172.
[Ol2] O. Oleinik, On the uniqueness of the generalized solution of the Cauchy problem
for a nonlinear system of equations occurring in mechanics, Uspekhi Mat. Nauk.
12(1957), 169–176.
[Ovs] L. Ovsjannikov, A nonlinear Cauchy problem in a scale of Banach spaces, Sov.
Math. Dokl. 12(1971), 1497–1502.
[PS] R. Pego and D. Serre, Instabilities in Glimm’s scheme for two systems of mixed
type, SIAM J. Numer. Anal. 25(1988), 965–989.
[Ra] J. Rauch, The u
5
-Klein-Gordon equation, Pitman Res. Notes in Math. #53,
pp. 335–364.
[RR] J. Rauch and M. Reed, Propagation of singularities for semilinear hyperbolic
equations in one space variable, Ann. Math. 111(1980), 531–552.
[Re] M. Reed, Abstract Non-Linear Wave Equations, LNM #507, Springer, New York,
1976.
[RL] P. Resibois and M. DeLeener, Classical Kinetic Theory of Fluids, Wiley,
New York, 1977.
[Rub] B. Rubino, On the vanishing viscosity approximation to the Cauchy problem for a
2 2 system of conservation laws, Ann. Inst. H. Poincar´e (Analyse non lin´eaire)
10(1993), 627–656.
[SS1] D. Schaeffer and M. Shearer, The classification of 2 2 systems of non-strictly
hyperbolic conservation laws with application to oil recovery, CPAM 40(1987),
141–178.
[SS2] D. Schaeffer and M. Shearer, Riemann problems for nonstrictly hyperbolic 2 2
systems of conservation laws, TAMS 304(1987), 267–306.
[Seg] I. Segal, The global Cauchy problem for a relativistic scalar field with power
interaction, Bull. Soc. Math. France 91(1963), 129–135.
[Se] D. Serre, La compacit´e par compensation pour les syst`emes hyperboliques non-
lin´eaires de deux equations a une dimension d’espace, J. Math. Pures et Appl.
65(1986), 423–468.
[Sha] J. Shatah, Weak solutions and development of singularities of the SU(2) -model,
CPAM 49(1988), 459–469.