10. Paradifferential operators 71
with
2
, and that
(10.89) kD
˛
b.;/k
C
r
C
˛
hi
m
2
j˛j
:
Then, if C 1>r, we have (10.65)–(10.66), with
(10.90) r
.x; D/ 2 OP S
2
Cm
2
r
1;1
:
The following is a commonly encountered special case of Proposition 10.8.
Corollary 10.9. In Proposition 10.8, replace the hypothesis (10.89)by
(10.91) D
ˇ
x
b.x; / 2 S
m
2
1;1
; for jˇjDK;
where K 2f1; 2; 3; : : : g is given. Then we have (10.65)–(10.66), with
(10.92) r
.x; / 2 OP S
2
Cm
2
K
1;1
if K:
Proof. The hypothesis (10.91) implies (10.89), with r D K.
We can also deduce from Proposition 10.8 that a.x; D/b.x; D/ has a complete
asymptotic expansion if b.x;/ is a symbol of type .1; ı/ with ı<1.
Corollary 10.10. If 0 ı<1and
(10.93) a.x; / 2 S
1;1
;b.x;/2 S
m
1;ı
;
then a.x; D/b.x; D/ 2 OP S
Cm
1;1
, and we have (10.65)–(10.66), with
(10.94) r
.x; D/ 2 OP S
Cm.1ı/
1;1
:
Proof. Altering b.x; / by an element of S
1
1;0
, one can arrange that the condition
(10.73) on supp
O
b.; / hold. Then, apply Corollary 10.9, with m
2
D m CKı,so
m
2
K D m K.1 ı/,andtakeK D .
Note that, under the hypotheses of Corollary 10.10,
(10.95)
X
j˛jD
1
˛Š
@
˛
a.x; / @
˛
x
b.x; / 2 S
Cm.1ı/
1;1
;
so we actually have
(10.96) r
1
.x; D/ 2 OP S
Cm.1ı/
1;1
:
The family [
m
OP BS
m
1;1
does not form an algebra, but the following result is
a useful substitute: