APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES
||||
A77
7. 0.2533, 0.2170, 0.2101, 0.2050; 0.2
9. (a) Left: 0.8100, 0.7937, 0.7904;
right: 0.7600, 0.7770, 0.7804
11. 34.7 ft, 44.8 ft 13. 63.2 L, 70 L 15. 155 ft
17. 19.
21.
The region under the graph of from 0 to
23. (a) (b) (c)
25.
EXERCISES 5.2
N
PAGE 310
1.
The Riemann sum represents
the sum of the areas of the two
rectangles above the -axis minus
the sum of the areas of the three
rectangles below the -axis; that is,
the net area of the rectangles with
respect to the -axis.
3. 0.856759
5. (a) 4 (b) 6 (c) 10 7. , 9. 124.1644
11. 0.3084 13. 0.30843908, 0.30981629, 0.31015563
15.
The values of appear to be
approaching 2.
17. 19. 21. 42
23. 25. 3.75 29.
31.
33.
(a) 4 (b) 10 (c) 3 (d) 2 35.
37. 39. 41.
0 43. 3 45. 22.5
47. 49.
51.
by Comparison Property 8
55. 57.
59. 69. 71.
1
2
x
1
0
x
4
dx2
y
1
1
s
1 x
4
dx 2
s
2
12
y
兾3
兾4
tan
x dx
12
s
3
3 x
4
1
s
x dx 6
2m
x
2
0
f 共x兲 dx 2M
122x
5
1
f 共x兲 dx
2.53
9
4
3
4
lim
n
l
兺
n
i苷1
冉
sin
5
i
n
冊
n
苷
2
5
lim
n
l
兺
n
i苷1
2 4i兾n
1 共2 4i兾n兲
5
ⴢ
4
n
4
3
x
8
1
s
2x x
2
dx
y
6
2
1 x
2
4 x
2
dx
R
n
85475
The Riemann sum represents
the sum of the areas of the
two rectangles above the
x-axis minus the sum of the
areas of the three rectangles
below the x-axis.
6
sin b, 1
32
3
n
2
共n 1兲
2
共2n
2
2n 1兲
12
lim
n
l
64
n
6
兺
n
i苷1
i
5
兾4y 苷 tan x
lim
n
l
兺
n
i苷1
冉
i
2n
cos
i
2n
冊
2n
lim
n
l
兺
n
i苷1
s
4
1 15i兾n ⴢ 共15兾n兲
EXERCISES 5.3
N
PAGE 321
1. One process undoes what the other one does. See the
Fundamental Theorem of Calculus, page 320.
3. (a) 0, 2, 5, 7, 3 (d)
(b) (0, 3)
(c)
5. (a), (b)
7.
9. 11.
13. 15.
17. 19. 21.
63
23. 25. 27. 29. 31. 1 33.
35.
0
37. The function is not continuous on the interval
, so FTC2 cannot be applied.
39. The function is not continuous on the
interval , so FTC2 cannot be applied.
41. 43. 2
45. 3.75
47.
49. 51.
53.
(a) , n an integer
(b) , , and ,
an integer (c) 0.74
55. (a) Loc. max. at 1 and 5;
loc. min. at 3 and 7
(b)
(c)
(d) See graph at right.
(
1
2
, 2
)
, 共4, 6兲, 共8, 9兲
x 苷 9