Semi-empirical simulation of carbon nanotube properties 185
and the combination with methods at different approximation levels make it an accurate
and efficient way to treat the electron degrees of freedom of the CNT-based system. We
have demonstrated that the low dimensional (0D and 1D) characteristics of geometric
and electronic properties make CNTs a promising element with unique properties for
applications in electronic transport devices as well as in biological systems involving
nano-scale confinement in molecular channels.
Acknowledgements
This work was supported by the National Science Foundation through grants NCN
EEC-0228390 and NSF CCR 01-21616, and by the US Army Research Office DURINT
program through contract SIT 527826-08. We also acknowledge Deyu Lu, Slava V.
Rotkin and Klaus Schulten for their collaboration in related research projects.
References
[1] S. Iijima and T. Ichihashi, Nature, 363 (1993) 603.
[2] S. Iijima, Nature, 354 (1991) 56.
[3] D. S. Bethune, et al., Nature, 363 (1993) 605.
[4] P. Avouris, Acc. Chem. Res., 35 (2002) 1026.
[5] D. Lu, Y. Li, U. Ravaioli, and K. Schulten, Phys. Rev. Lett., 95 (2005) 246801.
[6] Y. Li, U. Ravaioli, and S. V. Rotkin, Phys. Rev. B, 73 (2006) 035415.
[7] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes,
Imperial College Press, London, 1998.
[8] N. Hamada, S. I. Sawada, and A. Oshiyama, Phys. Rev. Lett., 68 (1992) 1579.
[9] I. Cabria, J. W. Mintmire, and C. T. White, Phys. Rev. B, 67 (2003) 121406.
[10] N. F. Mott, Metal-Insulator Transitions, Taylor and Francis, London, 1974.
[11] T. Ando, T. Nakanishi, and R. Saito, J. Phys. Soc. Jpn., 67 (1998) 2857.
[12] S. V. Rotkin and S. Subramoney (eds), Applied Physics of Nanotubes: Fundamentals of
Theory, Optics and Transport Devices, Springer-Verlag, Berlin, 2005.
[13] M. S. Dresselhaus, P. Avouris, and G. Dresselhaus (eds), Carbon Nanotubes: Synthesis,
Structure, Properties, and Applications, Springer-Verlag, Berlin, 2001.
[14] P. Delaney, H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Nature, 391 (1998) 466.
[15] C. L. Kane and E. J. Mele, Phys. Rev. Lett., 78 (1997) 1932.
[16] C. J. Park, Y. H. Kim, and K. J. Chang, Phys. Rev. B, 60 (1999) 10656.
[17] P. E. Lammert, P. H. Zhang, and V. H. Crespi, Phys. Rev. Lett., 84 (2000) 2453.
[18] O. Gülseren, T. Yildirim, S. Ciraci, and Ç. K$l$ç, Phys. Rev. B, 65 (2002) 155410.
[19] J. Q. Lu, et al., Phys. Rev. Lett., 90 (2003) 156601.
[20] Y. Li, S. V. Rotkin, and U. Ravaioli, Nano Lett., 3 (2003) 183.
[21] J. O’Keeffe, C. Y. Wei, and K. J. Cho, Appl. Phys. Lett., 80 (2002) 676.
[22] Y.-S. Lee, M. B. Nardelli, and N. Marzari, Phys. Rev. Lett., 95 (2005) 076804.
[23] M. Damnjanovi
´
c, I. Milošev
´
c, T. Vukovi
´
c, and R. Sredanovi
´
c, Phys. Rev. B, 60 (1999) 2728.
[24] Y. Li, S. V. Rotkin, and U. Ravaioli, Appl. Phys. Lett., 85 (2004) 4178.
[25] S. V. Rotkin and K. Hess, Appl. Phys. Lett., 84 (2004) 3139.
[26] M. J. Biercuk, N. Mason, J. M. Chow, and C. M. Marcus, Nano Lett., 4 (2004) 2499.
[27] W. H. Noon, K. D. Ausman, R. E. Smalley, and J. Ma. Chem. Phys. Lett., 355 (2002) 445.
[28] G. Hummer, J. C. Rasaiah, and J. P. Noworyta,
Nature, 414 (2001) 188.
[29] R. J. Mashl, S. Joseph, N. R. Aluru, and E. Jakobsson, Nano Lett., 3 (2003) 589.