
Equilibrium Properties of the Cellular Automata Models for Traffic Flow in a Single Lane
189
Helbing, D. (1998). Structure and instability of high-density equations for traffic flow,
Physical Review E, Vol. 57, Issue 5, (May 1998) 6176-6179, ISSN: 1539-3755.
Helbing, D. (2001). Traffic and related self-driven many-particle systems, Reviews of Modern
Physics, Vol. 73, Issue 4, (October 2001) 1067–1141, ISSN: 0034-6861.
Helbing, D. & Treiber, M. (1998). Gas-Kinetic-Based Traffic Model Explaining Observed
Hysteretic Phase Transition, Physical Review Letters, Vol. 81, Issue 14, (October 1998)
3042-3045, ISSN: 0031-9007.
Herman, R. & Gardels, K. (1963). Vehicular Traffic Flow, Scientific American, Vol. 209, Issue
6, (1963), 35-43.
Kadanoff, L. P. & Swift, J. (1968). Transport Coefficients near the Critical Point: A Master-
Equation Approach, Physical Review, Vol. 165, Issue 1, (January 1968), 310-322,
ISSN: 0031-899X.
Krauß, S.; Nagel, K. & Wagner, P. (1999). The mechanism of flow breakdown in traffic flow
models, in: Proceedings of the International Symposium on Traffic and
Transportation Theory (ISTTT99), Jerusalem, 1999.
Kühne, R. & Michalopoulos, P. (1998). Continuum Flow Models, In: Traffic Flow Theory. A
State of the Art Report, N. Gartner, C.J. Messner & A.J. Rathi (Eds.), Transportation
Research Board (TRB) Special Report 165, 2nd ed.
Lee, K.; Hui, P.; Mao, D.; Wang, B. H. & Wu, Q. S. (2002). Fukui–Ishibashi traffic flow
models with anticipation of movement of the car ahead, Journal of the Physical
Society of Japan, Vol. 71, No. 7, (February 2002), 1651–1654, ISSN: 0031-9015.
Maerivoet, S. & De Moor, B. (2005). Cellular automata models of road traffic, Physics Reports
Vol. 419, Issue 1, (November 2005), 1-64, ISSN; 0370-1573.
MM5. (2003). MM5 Community Model. Visit: http://www.mmm.ucar.edu/mm5/
Nagatani, T. (1997a). Kinetic segregation in a multilane highway traffic flow, Physica A Vol.
237, Issues 1-2, (March 1997), 67-74, ISSN: 0378-4371.
Nagatani, T. (1997b). Gas Kinetics of Traffic Jam, Journal of the Physical Society of Japan, Vol.
66, (1997), 1219-1224, ISSN: 0031-9015.
Nagatani, T. (2002). The physics of traffic jams, Reports on Progress in Physics, Vol. 65, Issue 9,
(September 2002), 1331-1386, ISSN: 0034-4885.
Nagel, K. (1996). Particle hopping models and traffic flow theory, Physical Review E, Vol. 53,
Issue 5, (May 1996), 4655-4672, ISSN: 1539-3755.
Nagel, K. & Barrett, C. L. (1997). Using Microsimulation Feedback For Trip Adaptation For
Realistic Traffic In Dallas, International Journal of Modern Physics C, Vol. 8, Issue 3,
(June 1997), 505-525, ISSN: 0129-1831.
Nagel, K. & Nelson, P. (2005). A critical comparison of the kinematic-wave model with
observational data, In: Transportation and Traffic Theory. Flow, Dynamics and Human
Interaction, H.S. Mahmassani (Ed.), 145-163, Elsevier, ISBN: 0-08-044680-9, USA.
Nagel, K. & Paczuski, M. (1995). Emergent traffic jams, Physical Review E, Vol. 51, Issue 4,
(April 1995), 2909-2918, ISSN: 1539-3755.
Nagel, K. & Schreckenberg, M. (1992). A cellular automaton model for freeway traffic.
Journal de Physique I, France, Vol. 2, No. 12, (December 1992), 2221-2229.
Nagel, K.; Wagner, P. & Woesler, R. (2003). Still Flowing: Approaches to Traffic Flow and
Traffic Jam Modeling, Opera
tio
ns Research, Vol. 51, No. 5, (September-October 2003),
681-710, ISSN: 0030-364X.