Working group III of IPCC, Cambridge University Press, Cambridge, UK.
http://www.ipcc.chAccessed Oct 2010
8. Ebner AD, Ritter JA (2005) Separation technology R&D needs for hydrogen production in
the chemical and petrochemical industries. Chemical industry vision 2020 technology
partnership www.chemicalvision2020.orgAccessed Oct 2010
9. Ebner AD, Ritter JA (2009) State-of-the-art adsorption and membrane separation processes
for carbon dioxide production from carbon dioxide emitting industries. Separ Sci Technol
44:1273–1421. doi:10.1080/01496390902733314
10. Carbo MC, Jansen D, Haije WG, Verkooijen AWG (2006) Advanced membrane reactors for
fuel decarbonisation in IGCC: H
2
or CO
2
separation? Fifth annual conference on carbon
capture and sequestration, 8–11 May, Alexandria VA, USA. ECN-RX–06-084.
http://www.ecn.nl/publicationsAccessed Oct 2010
11. HYDROSEP (2010) Hydrogen separation in advanced gasification processes. RFSC contract
RFCR-CT-2006-00003
12. Barin I, Knacke O (1973) Thermochemical properties of inorganic substances. Springer-
Verlag, Berlin
13. Favetta B (2007) Modellizzazione e simulazione di reattori a membrana per la produzione
d’idrogeno da gas di sintesi. Tesi di laurea (PhD thesis), Università di roma La Sapienza
14. AGAPUTE (2010) Advanced gas purification technologies for co-gasification of coal,
refinery by-products, biomass and waste, targeted to clean power produced from gas and
steam turbine generator sets and fuel cells. RFCS Contract RFC-CR-04006
15. Piemonte P, De Falco M, Favetta B, Basile B (2010) Counter-current membrane reactor for
WGS process: membrane design. Int J Hydrogen Energ. doi:10.1016/j.ijhydene.2010.07.158
16. Criscuoli A, Basile A, Drioli E (2000) An analysis of the performance of membrane reactors
for the water–gas shift reaction using gas feed mixtures. Catal Today 56:53–64
17. Enick RM, Hill JW, Cugini AV, Rothenberger KS, McIlvried HG (1999) A model of a high
temperature high pressure water-gas shift tubular membrane reactor. ACS Fuels Fall
(New Orleans) 44:919–923
18. Raja LL, Kee RJ, Deutschmann O, Warnatz J, Schmidt LD (2000) A critical evaluation of
Navier–Stokes boundary-layer and plug-flow models of the flow and chemistry in a catalytic-
combustion monolith. Catal Today 59:47–60
19. Gosiewsky K, Warmuzinsky K, Tankzyk M (2010) Mathematical simulation of WGS
membrane reactor for gas from gasification. Catal Today. doi:10.1016/j.cattod.2010.02.031
20. Alefeld G, Volkl J (1978) Hydrogen in metals, Vols I and II. Springer-Verlag, Berlin
21. Sonwane CG, Wilcox J, Ma YH (2006) Solubility of hydrogen in PdAg and PdAu binary
alloys using density functional theory. J Phys Chem B 110(48):24549–24558
22. Jemaa N, Grandjean BPA, Kaliaguine S (1995) Diffusion coefficient of hydrogen in a Pd–Ag
membrane effect of hydrogen solubility. Can J Chem Eng 73:405–410. doi:10.1002/cjce.
5450730318
23. Whitaker S (1972) Forced convection heat transfer correlations for flow in pipes, past flat
plates single cylinder single sphere and for flow in packed beds and tube bundles. AIChE J
18:361–371
24. Dullien FAL (1979) Porous media fluid transport and pore structure. Academic Press,
London, UK
25. McCabe WE, Smith JC, Harriott P (2001) Unit operations of chemical engineering. McGraw-
Hill, New York
26. Huang SC, Lin CH, Wang JH (2010) Trends of water gas shift reaction on close-packed
transition metal surfaces. J Phys Chem 114:9826–9834
27. Smith RJB, Muruganandam L, Shantha MS (2010) A review of the water gas shift reaction
kinetics. Int J Chem React Eng 8:R4
28. Callaghan CA (2006) Kinetics and catalysis of the water–gas-shift reaction: a microkinetic
and graph theoretic approach. PhD thesis, Worcester Polytechnic Institute Electronic Theses
& Dissertation. http://www.wpi.edu/Pubs/ETD/Accessed Oct 2010
166 A. Di Donato