PFE, Chapter 11: Statistics chapter page 37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
ABCD E FG H
Year
ending
General
Motors
GM
Microsoft
MSFT
Heinz
HNZ
Portfolio
return
Dec-90 -11.54% 72.99% 2.46% 34.92% <-- =0.2*B3+0.5*C3+0.3*D3
Dec-91 -11.35% 121.76% 14.54% 62.97% <-- =0.2*B4+0.5*C4+0.3*D4
Dec-92 16.54% 15.11% 16.89% 15.93%
Dec-93 72.64% -5.56% -15.95% 6.96%
Dec-94 -21.78% 51.63% 6.55% 23.42%
Dec-95 28.13% 43.56% 39.81% 39.35%
Dec-96 8.46% 88.32% 11.56% 49.32%
Dec-97 19.00% 56.43% 45.89% 45.78%
Dec-98 21.09% 114.60% 14.11% 65.75%
Dec-99 21.34% 68.36% -27.44% 30.22%
Average 14.25% 62.72% 10.84% <-- =AVERAGE(D3:D12) Average 37.46% <-- =AVERAGE(G3:G12)
Variance 0.0638 0.1443 0.0440 <-- =VARP(D3:D12) Variance 3.31% <-- =VARP(G3:G12)
Sigma 25.25% 37.99% 20.98% <-- =STDEVP(D3:D12) Sigma 18.21% <-- =STDEVP(G3:G12)
Covariances
lternative calculation of portfolio statistics
Cov(r
GM
,r
MSFT
)
-0.0552 <-- =COVAR(B3:B12,C3:C12)
Average
37.46% <-- =0.2*B14+0.5*C14+0.3*D14
Cov(r
GM
,r
HNZ
)
-0.0096 <-- =COVAR(B3:B12,D3:D12) Variance 0.0331
<-- =0.2^2*B16+0.4^2*C16+0.3^2*D16
+2*0.2*0.4*B20+2*0.2*0.3*B21+2*0.4*0.3*B22
Cov(r
MSFT
,r
HNZ
)
0.0092 <-- =COVAR(C3:C12,D3:D12)
Sigma
18.21% <-- =SQRT(G20)
PORTFOLIO RETURNS FOR
A 3-STOCK PORTFOLIO
If you look at cells G19:G21, you’ll see that there is a more efficient way of doing the same
calculations, based on the following formulas:
(
()
() ( ) ( )
() ()
()
22 2
2,2,
2,
p GM GM MSFT MSFT HNZ HNZ
p GM GM MSFT MSFT HNZ HNZ
GM MSFT GM MSFT GM HNZ GM HNZ
MSFT HNZ MSFT HNZ
Expected portfolio return E r x E r x E r x E r
Portfolio variance Var r x Var r x Var r x Var r
xx Covr r xxCovr r
xxCovr r
== + +
== + +
++
+
These formulas generalize to any number of assets: If we have a portfolio composed of N
assets, and that we know all the expected returns, variances, and covariances. Then:
• The portfolio’s expected return is the weighted average of the individual asset returns.
Denoting the portfolio weights by
12
, ,...,
N
xx
, the portfolio expected return is:
()
() ()
)
()
11 2 2
1
...
pNN
N
ii
i
Er xEr xEr xEr
xE r
=
=+ ++
=
∑
•
The portfolio’s variance of return is the sum of the following two expressions: