
224
temperature was seen to stabilize and shows an increase rather than the more
usual decrease on the addition of the functionalized CNTs (Fig.1, right). A
general increase in the decomposition temperature of the composites gives
further evidence of the NTs behaving as covalently bonded “building blocks”.
A comparison study of composites prepared without the 12 hour gap before
hardener addition is being undertaken at present. SEM pictures indicate a
system in which the NTs are properly wet by the polymer and fully
incorporated into the matrix, contrasting with those of the one-step composites
that show protruding bundles of nanotubes.
Figure 1. Left: Storage Moduli of Composites. Right: Shift in Glass Transition Temperature of
Composites (tan G; from DMA measurements).
References
1. V. N. Popov, Carbon Nanotubes: Properties and Applications, Materials Science and
Engineering R 43, 61-102 (2004).
2. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Carbon nanotubes—the route toward
applications, Science 297, 787-792 (2002).
3. R. Andrews and M. C. Weisenberger, Carbon nanotube polymer composites, Current Opinion
in Solid State and Material Science 8, 31-37 (2004).
4. Y. S. Song and J. R. Youn, Influence of dispersion states of carbon nanotubes in the
nanocomposites, Carbon 43, 1378-1385 (2005).
5. A. Star, J. F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E. W. Wong, X. Yang, S. W.
Chung, H. Choi, and J. R. Heath, Preparation and properties of polymer-wrapped single-
walled carbon nanotubes, Angew. Chem. Int. Ed. 40(9), 1721-1725 (2001).
6. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson,
K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y.-S. Shon and T. R. Lee, D. T. Colbert,
R. E. Smalley, Fullerene Pipes, Science 280, 1253-1256 (1998).
7. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, and R. C. Haddon,
Solution Properties of Single-Walled Carbon Nanotubes, Science 282, 95-98 (1998).