U
F =
∞
S
n=1
F
n
f : {0, 1}
∗
−→{0, 1}
∗
F
n
2
2n
{0, 1}
2n
F
n
|¯a,
¯
bi = |¯a, f ( ¯a)
M
¯
bi, ¯a,
¯
b ∈ {0, 1}
n
,
L
{z
0
+ z
1
| z
1
, z
2
∈ , |z
0
|
2
+ |z
1
|
2
= 1}
2
v
1
, v
2
, ···, v
τ
v
τ +1
, v
τ +2
, ···, v
τ +2n
τ = τ(n)
n Q = {v
1
, v
2
, ···, v
τ +2n
}
e : Q−→{0, 1} |e(v
1
), e(v
2
), ···, e(v
τ +2n
)i
{0, 1} K = 2
τ +2n
e
0
, e
1
, ···, e
K−1
H K
e
0
, e
1
, ···, e
K−1
H
H
1
N
H
2
N
···
N
H
τ +2n
H
i
v
i
, i = 1, 2, ···, τ + 2n x ∈ H kxk = 1
G, U
G ⊂ {1 , 2, ···, τ + 2n} U ∈ U 2
card(G)
W
G,U
H E
N
U
0
U
0
U
N
i∈G
H
i
E
N
i/∈G
H
i
Qu
f
H E
N
F
0
n
F
0
n
F
n
τ +2n
N
i=τ+1
H
i
E
τ
N
i=1
H
i
χ =
K−1
P
i=0
λ
i
e
i
,