244
Paul R. Ortiz de Montellano and James J. De Voss
314.
Akhtar, M., A.D. Rahimtula, LA. Watkinson, D.C.
Wilton, and K.A. Munday (1969). Status of C-6,
C-7, C-15, and C-16 hydrogen atoms in choles-
terol biosynthesis.
Eur.
J. Biochem. 9,
107-111.
315.
R.T. Fischer, J.M. Trzaskos, R.L. Magolda, S.S.
Ko,
C.S. Brosz, and B. Larsen (1991). Lanosterol
14a-methyl demethylase. Isolation and character-
ization of the third metabolically generated oxida-
tive demethylation intermediate. J. Biol. Chem.
266,
6124-6132.
316.
Lamb, D.C, D.E. Kelly, M.R. Waterman, M.
Stromstedt, D. Rozman, and S.L. Kelly (1999).
Characteristics of the heterologously expressed
human lanosterol 14a-demethylase (other names:
P45014DM,
CYP51,
P45051) and inhibition of
the purified human and Candida albicans CYP51
with azole antifungal agents. Yeast 15, 755-763.
317.
Sloane, D.L., O.-Y. So, R. Leung, L.E. Scarafia,
N.
Saldou, K. Jarnagin et al. (1995). Cloning and
functional expression of the cDNA encoding rat
lanosterol 14a-demethylase. Gene 161, 243-248.
318.
Cabello-Hurtado, E, M. Taton, N. Forthofifer, R.
Kahn, S. Bak, A. Rahier et al. (1999). Optimized
expression and catalytic properties of a wheat
obtusifoliol 14a-demethylase (CYP51) expressed in
yeast. Complementation of erg 11D yeast mutants by
plant
CYP51.
Eur.
J. Biochem. 262, 435^H6.
319.
Bellamine, A., A.T. Mangla, WD. Nes, and M.R.
Waterman (1999). Characterization and catalytic
properties of the sterol 14a-demethylase from
Mycobacterium tuberculosis. Proc. Natl.
Acad.
Sci. USA 96, 8937-8942.
320.
Lamb, D.C, K. Fowler, T. Kieser, N. Manning,
L.M. Podust, M.R. Waterman et al. (2002). Sterol
14a-demethylase activity in Streptomyces coeli-
colorA3(2) is associated with an unusual member
of the CYP51 gene family. Biochem. J. 364,
555-562.
321.
Jackson, C.J., D.C. Lamb, T.H. Marczylo, A.G.S.
Warrilow, N.J. Manning, D.J. Lowe et al. (2002). A
novel sterol 14a-Demethylase/Ferredoxin fusion
protein (MCCYP51FX) from
Methylococcus
capsu-
latus represents a new class of the cytochrome P450
superfamily
J.
Biol. Chem. 277, 46959^6965.
322.
Lamb, D.C, D.E. Kelly, and S.L. Kelly (1998).
Molecular diversity of sterol 14a-demethylase
substrates in plants, fungi and humans. FEBSLett.
425,
263-265.
323.
Roberts, E.S., A.D.N. Vaz, and M.J. Coon (1991).
Catalysis by cytochrome P-450 of an oxidative
reaction in xenobiotic aldehyde metabolism:
Deformylation with olefin formation. Proc. Natl.
Acad.
Sci. USA 88, 8963-8966.
324.
Vaz, A.D.N., E.A. Roberts, and M.J. Coon (1991).
Olefin formation in the oxidative deformylation of
aldehydes by cytochrome P-450. Mechanistic
implications for catalysis by oxygen-derived per-
oxide. J
.4m.
Chem. Soc. 113, 5886-5887.
325.
Raner, G.M., E.W Chiang, A.D.N. Vaz, and M.J.
Coon (1997). Mechanism-based inactivation of
cytochrome P450 2B4 by aldehydes: Relationship
to aldehyde deformylation via a peroxyhemiacetal
intermediate. Biochemistry 36, 4895^902.
326.
Vaz, A.D.N., K.J. Kessell, and M.J. Coon (1994).
Aromatization of a bicyclic steroid analog, 3-oxode-
calin-4-ene-lO-carboxaldehyde, by liver microso-
mal cytochrome P450 2B4. Biochemistry 33,
13651-13661.
327.
Vaz, A.D., S.J. Pernecky, G.M. Raner, and M.J.
Coon (1996). Peroxo-iron and oxenoid-iron
species as alternative oxygenating agents in
cytochrome P450-catalyzed reactions: Switching
by threonine-302 to alanine mutagenesis of
cytochrome P450 2B4. Proc. Natl.
Acad.
Sci. USA
93,
4644^648.
328.
Kuo, C.L., G.M. Raner, A.D. Vaz, and M.J. Coon
(1999).
Discrete species of activated oxygen yield
different cytochrome P450 heme adducts from
aldehydes. Biochemistry 3S, 10511-10518.
329.
Raner, G.M., J.A. Hatchell, M.U Dixon, T.L. Joy,
A.E. Haddy, and E.R. Johnston (2002). Regio-
selective peroxo-dependent heme alkylation in
P450BM3-F87G by aromatic aldehydes: Effects
of alkylation on catalysis. Biochemistry 41,
9601-9610.
330.
Reed, J.R., D. Vanderwel, S. Choi, G. Pomonis,
R.C Reitz, and G.J. Blomquist (1994). Unusual
mechanism of hydrocarbon formation in the
housefly: Cytochrome P450 converts aldehyde to
the sex pheromone component (Z)-9-tricosene and
CO2.
Proc.
Natl.
Acad.
Sci. USA 91, 10000-10004.
331.
Reed, J.R., DR. Quilici, G.J. Blomquist, and
R.C. Reitz (1995). Proposed mechanism for the
cytochrome P450-catalyzed conversion of aldehy-
des to hydrocarbons in the house fly, Musca
domestica. Biochemistry 34, 16221-16227.
332.
Adam, W, R. Curci, M.E. Gonzalez Nunez, and
R. Mello (1991). Thermally and photochemically
initiated radical chain decomposition of ketone-
free methyl(trifluoromethyl)dioxirane. J. Am.
Chem.
Soc. 113,7654-7658.
333.
Mpuru, S., J.R. Reed, R.C. Reitz, and G.J.
Blomquist (1996). Mechanism of hydrocarbon
biosynthesis from aldehyde in selected insect
species: Requirement for
O2
and NADPH and car-
bonyl group released as CO2. Insect Biochem.
Mol. Biol. 26, 203-208.
334.
Spiteller,
D.,
A.
Jux, J. Piel, and W Boland (2002).
Feeding of [5,5-^H2]-l-desoxy-D-xylulose and
[4,4,6,6,6-^H5]-mevalolactone to a geosmin-
producing Streptomyces sp. and Fossombronia
pusilla. Phytochemistry
61,
827-834.