232 Paul R. Ortiz de Montellano and James J. De Voss
38.
Schlichting, I., J. Berendzen, K. Chu, A.M. Stock,
S.A. Maves, D.E. Benson et al (2000). The cat-
alytic pathway of cytochrome
P450^^j^
at atomic
resolution. Science 1^1, 1615-1622.
39.
Davydov, R., T.M. Makris, V Kofman, D.E. Werst,
S.G. SHgar, and B.M. Hoffman (2001). Hydroxy-
lation of camphor by reduced oxy-cytochrome
P450cam: Mechanistic implications of EPR and
ENDOR studies of catalytic intermediates in native
and mutant enzymes. J. Am. Chem. Soc. 123,
1403-1415.
40.
Denisov, I.G., T.M. Makris, and S.G. Sligar (2001).
Cryotrapped reaction intermediates of cytochrome
P450 studied by radiolytic reduction with phospho-
rus-32.
J. Biol. Chem. 216, 11648-11652.
41.
Rahimtula, A.D., PJ. O'Brien, E.G. Hrycay,
J.A. Peterson, and R.W. Estabrook (1974). Possible
higher valence states of cytochrome P-450 during
oxidative reactions. Biochem. Biophys. Res.
Commun. 60, 695-702.
42.
Blake, R.C. and M.J. Coon (1981). On the mecha-
nism of action of cytochrome P-450. Role of
peroxy spectral intermediates in substrate hydroxy-
lation. J. Biol. Chem. 256, 5755-5763.
43.
Wagner, G.C., M.M. Palcic, and H.B. Dunford
(1983).
Absorption spectra of cytochrome
P450CAM in the reaction with peroxy acids. FEBS
Lett. 156, 244-248.
44.
Egawa, T, H. Shimada, and Y. Ishimura (1994).
Evidence for compound
I
formation in the reaction of
cytochrome P450cam with m-chloroperbenzoic acid.
Biochem.
Biophys.
Res. Commun. 201, 1464-1469.
45.
Schiinemann, V, C. Jung, A.X. Trautwein,
D.
Mandon, and R. Weiss (2000). Intermediates in
the reaction of substrate-free cytochrome P450cam
with peroxy acetic acid. FEBS Lett. 179, 149-154.
46.
Schiinemann, V, C. Jung, J. Terner, A.X. Trautwein,
and R. Weiss (2002). Spectroscopic studies of
peroxyacetic acid reaction intermediates of
cytochrome
P450^^j^
and chloroperoxidase. J.
Inorg. Biochem. 91, 586-596.
47.
Kellner, D.G., S.-C. Nung, K.E. Weiss, and S.G.
Sligar (2002). Kinetic characterization of com-
pound I formation in the thermostable cytochrome
P450 CYPl 19. J. Biol. Chem. 271, 9641-9644.
48.
Vaz, A.D.N., D.F. McGinnity, and M.J. Coon
(1998).
Epoxidation of olefins by cytochrome
P450:
Evidence from site-specific mutagenesis for
hydroperoxo-iron as an electrophilic oxidant. Proc.
Natl.
Acad.
Sci. USA 95, 3555-3560.
49.
Jin, S., T.M. Makris, T.A. Bryson, S.G. Sligar, and
J.H. Dawson (2003). Epoxidation of olefins by
hydroperoxo-ferric cytochrome P450. J. Am. Chem.
Soc. 125, 3406-3407.
50.
Ogliaro, K, S.P de Visser, S. Cohen, RK. Sharma,
and S. Shaik (2002). Searching for the second oxi-
dant in the catalytic cycle of cytochrome P450: A
theoretical investigation of the iron(III)-hydroper-
0X0 species and its epoxidation pathways. J. Am.
Chem.
Soc. 124, 2806-2817.
51.
Guengerich, F.R, A.D.N. Vaz, G.N. Raner, S.J.
Pernecky, and M.J. Coon (1997). Evidence for a
role of a perferryl-oxygen complex, FeO^^, in the
N-oxygenation of amines by cytochrome P450
enzymes. Mol. Pharmacol. 51,
147-151.
52.
Vatsis, K.P and M.J. Coon (2002). Ipso-substitution
by cytochrome P450 with conversion of p-hydroxy-
benzene derivatives to hydroquinone: Evidence for
hydroperoxo-iron as the active oxygen species.
Arch.
Biochem. Biophys. 397, 119-129.
53.
Toy, PH., B. Dhanabalasingam, M. Newcomb,
I.H. Hanna, and PF HoUenberg (1997). A substituted
hypersensitive radical probe for enzyme-catalyzed
hydroxylations: Synthesis of racemic and enan-
tiomerically enriched forms and application in a
cytochrome P450-catalyzed oxidation. J. Org.
Chem.
62, 9\\4-9l22.
54.
Toy, PH., M. Newcomb, and PF. HoUenberg
(1998).
Hypersensitive mechanistic probe studies
of cytochrome P450-catalyzed hydroxylation reac-
tions.
Implications for the cationic pathway. J. Am.
Chem.
Soc. 120, 7719-7729.
55.
Toy, PH., M. Newcomb, M.J. Coon, and
A.D.N.
Vaz
(1998).
Two distinct electrophilic oxidants effect
hydroxylation in cytochrome P-450-catalyzed reac-
tions.
J. Am. Chem. Soc. 120, 9718-9719.
56.
Schoneboom, J.C, H. Lin, N. Renter, W Thiel,
S. Cohen, F Ogliaro et al. (2002). The elusive
oxidant species of cytochrome P450 enzymes:
Characterization by combined quantum mechani-
cal/molecular mechanical (QM/MM) calculations.
J.Am.
Chem. Soc. 124, 8142-8151.
57.
Ogliaro, F, S.P de Visser, S. Cohen, PK. Sharma,
and S. Shaik (2002). Searching for the second oxi-
dant in the catalytic cycle of cytochrome P450: A
theoretical investigation of the iron(III)-hydroper-
0X0 species and its epoxidation pathways. J. Am.
Chem.
Soc. 124,2806-2817.
58.
Kamachi, T, Y. Shiota, T. Ohta, and K. Yoshizawa
(2003).
Does the hydroperoxo species of
cytochrome P450 participate in olefin epoxidation
with the main oxidant, Compound
1:
Criticism from
density functional theory calculations. Bull. Chem.
Soc. Jpn. 16, 721-132.
59.
Groves, J.T, G.A. McClusky, R.E. White, and M.J.
Coon (1978). Aliphatic hydroxylation by highly
purified liver microsomal cytochrome P-450.
Evidence for a carbon radical intermediate.
Biochem. Biophys. Res. Commun. 81, 154-160.
60.
Ogliaro, F, S.P. de Visser, S. Cohen, J. Kaneti, and
S. Shaik (2001). The experimentally elusive oxi-
dant of cytochrome P450: A theoretical "trapping"
defining more closely the "real" species.
ChemBiochem. 11,
848-851.